1597: [Usaco2008 Mar]土地购买

Time Limit: 10 Sec  Memory Limit: 162 MB

Submit: 5466  Solved: 2035

[Submit][Status][Discuss]

Description

农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <
= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价
格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要
付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.

Input

* 第1行: 一个数: N
* 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽

Output

* 第一行: 最小的可行费用.

Sample Input

4

100 1

15 15

20 5

1 100

输入解释:

共有4块土地.

Sample Output

500

FJ分3组买这些土地:

第一组:100x1,

第二组1x100,

第三组20x5 和 15x15 plot.

每组的价格分别为100,100,300, 总共500.

我们先将所有矩形按照(x,y)排序,首先能保证x升序,再往前并掉y小于当前值的,使得x升序,y降序

这样我们设f[i]表示第i个位置最小方案,就有f[i] = min{f[j] + y[j + 1] * x[i]}

很明显斜率优化:化为-x[i] * y[j + 1] + f[i] = f[j]

维护凸包,用当前斜率-x[i]去截使得截距最小,大概是这个样子的:

单调队列维护凸包就好了

【调了一个晚上QAQ我还是太弱了】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define eps 1e-9
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 50005,maxm = 100005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
LL N,n;
LL f[maxn],q[maxn],l,r,X[maxn],Y[maxn];
struct node{LL x,y;}p[maxn];
inline bool operator < (const node& a,const node& b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
inline double slope(LL u,LL v){
return (double)(f[u] - f[v]) / (Y[u + 1] - Y[v + 1]);
}
inline LL getf(LL i,LL j){
return f[j] + Y[j + 1] * X[i];
}
int main()
{
N = read();
REP(i,N) p[i].x = read(),p[i].y = read();
sort(p + 1,p + 1 + N); Y[n] = INF;
for (int i = 1; i <= N; i++){
while (n && Y[n] <= p[i].y) n--;
X[++n] = p[i].x; Y[n] = p[i].y;
}
l = r = 0;
for (int i = 1; i <= n; i++){
while (l < r && slope(q[l],q[l + 1]) > -X[i]) l++;
f[i] = getf(i,q[l]);
while (l < r && slope(i,q[r]) > slope(q[r],q[r - 1])) r--;
q[++r] = i;
}
cout<<f[n]<<endl;
return 0;
}

BZOJ1597 土地购买 【dp + 斜率优化】的更多相关文章

  1. BZOJ1597土地购买 【斜率优化DP】

    BZOJ1597土地购买 [斜率优化DP] Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足( ...

  2. 【BZOJ-1597】土地购买 DP + 斜率优化

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2931  Solved: 1091[Submit] ...

  3. BZOJ1597: [Usaco2008 Mar]土地购买(dp 斜率优化)

    题意 题目链接 Sol 重新看了一遍斜率优化,感觉又有了一些新的认识. 首先把土地按照\((w, h)\)排序,用单调栈处理出每个位置第向左第一个比他大的位置,显然这中间的元素是没用的 设\(f[i] ...

  4. bzoj1597: [Usaco2008 Mar]土地购买 dp斜率优化

    东风吹战鼓擂第一题土地购买送温暖 ★★★   输入文件:acquire.in   输出文件:acquire.out   简单对比时间限制:1 s   内存限制:128 MB 农夫John准备扩大他的农 ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买( dp + 斜率优化 )

    既然每块都要买, 那么一块土地被另一块包含就可以不考虑. 先按长排序, 去掉不考虑的土地, 剩下的土地长x递增, 宽y递减 dp(v) = min{ dp(p)+xv*yp+1 } 假设dp(v)由i ...

  6. 1597: [Usaco2008 Mar]土地购买 [ dp+斜率优化 ] 未完

    传送门 1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1979  Solved: 705[Subm ...

  7. JZYZOJ1330 土地购买 dp 斜率优化

    不用long long的话只能ac一半的点而且完全查不出来错...放弃cin保平安..   x[i],y[i]分别为第i块土地的长和宽,输入后需要排序然后去掉冗余数据,最后得到的x[i]递增y[i]递 ...

  8. 土地购买 (斜率优化dp)

    土地购买 (斜率优化dp) 题目描述 农夫 \(John\) 准备扩大他的农场,他正在考虑$ N(1 \leqslant N \leqslant 50,000)$ 块长方形的土地. 每块土地的长宽满足 ...

  9. 2018.09.10 bzoj1597: [Usaco2008 Mar]土地购买(斜率优化dp)

    传送门 终究还是通宵了啊... 这是一道简单的斜率优化dp. 先对所有土地排序,显然如果有严格小于的两块土地不用考虑小的一块. 于是剩下的土地有一条边单增,另外一条单减. 我们假设a[i]是单减的,b ...

  10. BZOJ 1597 [Usaco2008 Mar]土地购买:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1597 题意: 有n块矩形土地,长为a[i],宽为b[i]. FJ想要将这n块土地全部买下来 ...

随机推荐

  1. AIX7.1删除大批量文件(百万级、千万级)

    假设/data/test目录下含有数百万上千万的文件需要删除,可以选择的方式如下: 1.如果文件名不包含空白符.引号等特殊字符,则可以使用如下命令: find /data/test -type f | ...

  2. 逆波兰表达式[栈 C 语言 实现]

    逆波兰表达式 逆波兰表达式又叫做后缀表达式.在通常的表达式中,二元运算符总是置于与之相关的两个运算对象之间,这种表示法也称为中缀表示.波兰逻辑学家J.Lukasiewicz于1929年提出了另一种表示 ...

  3. 「雅礼集训 2017 Day1」市场 (线段树除法,区间最小,区间查询)

    老师说,你们暴力求除法也整不了多少次就归一了,暴力就好了(应该只有log(n)次) 于是暴力啊暴力,结果我归天了. 好吧,在各种题解的摧残下,我终于出了一篇巨好看(chou lou)代码(很多结构体党 ...

  4. 如何使用AEditor制作一个简单的H5交互页demo

    转载自:http://www.alloyteam.com/2015/06/h5-jiao-hu-ye-bian-ji-qi-aeditor-jie-shao/ 本教程演示如何使用AEditor制作一个 ...

  5. HTMLTestRunner带饼图

    # -*- coding: utf-8 -*- """ A TestRunner for use with the Python unit testing framewo ...

  6. Python基础框架和工具

    最近在学Python金融大数据分析,在安装Python进行大数据分析的环境时遇到很多问题,例如:在安装pandas包时候就要到各种错误,总是缺少很多安装包,最后发现利用Python的Anaconda进 ...

  7. 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧

    由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...

  8. Java动态代码模式

    java动态代理(JDK和cglib) JAVA的动态代理 代理模式 代理模式是常用的java设计模式,他的特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委 ...

  9. selenium元素定位不到之iframe---基于python

    我们在使用selenium的18中定位方式的时候,有时会遇到定位不上的问题,今天我们就来说说导致定位不上的其中一个原因---iframe 问题描述:通过firebug查询到相应元素的id或name等, ...

  10. NIO 服务端TCP连接管理的方案

    最近做的一个项目需要在服务端对连接端进行管理,故将方案记录于此. 方案实现的结果与背景 因为服务端与客户端实现的是长连接,所以需要对客户端的连接情况进行监控,防止无效连接占用资源. 完成类似于心跳的接 ...