题目链接

BZOJ3714

题解

我们如果知道了所有的数,同样就知道了所有的前缀和

相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的

对于一个区间\([l,r]\)如果我们知道了前缀和\(sum[l - 1]\),我们就知道了\(sum[r]\)

所以区间\([l,r]\)相当于连接\(l - 1\)和\(r\)的边

而\(sum[0]\)我们是知道的

所以我们只需最小代价使所有点联通

最小生成树即可

由于边很多,使用\(prim\)算法

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define res register
using namespace std;
const int maxn = 2005,maxm = 2000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int G[maxn][maxn],n,d[maxn],vis[maxn];
priority_queue<cp,vector<cp>,greater<cp> > q;
LL prim(){
LL ans = 0;
memset(d,0x3f3f3f3f,sizeof(d));
d[0] = 0; q.push(mp(d[0],0));
int u;
while (!q.empty()){
u = q.top().second; q.pop();
if (vis[u]) continue;
vis[u] = true;
ans += d[u];
for (int to = 0; to <= n; to++)
if (to != u && !vis[to] && d[to] > G[u][to]){
d[to] = G[u][to];
q.push(mp(d[to],to));
}
}
return ans;
}
int main(){
n = read();
for (res int i = 0; i < n; i++){
for (res int j = i + 1; j <= n; j++){
G[i][j] = G[j][i] = read();
}
}
printf("%lld\n",prim());
return 0;
}

BZOJ3714 [PA2014]Kuglarz 【最小生成树】的更多相关文章

  1. BZOJ3714 PA2014 Kuglarz 最小生成树

    题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...

  2. 【BZOJ3714】[PA2014]Kuglarz 最小生成树

    [BZOJ3714][PA2014]Kuglarz Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获 ...

  3. bzoj3714: [PA2014]Kuglarz

    [PA2014]KuglarzTime Limit: 20 Sec Memory Limit: 128 MBSubmit: 553 Solved: 317[Submit][Status][Discus ...

  4. bzoj 3714 [PA2014]Kuglarz 最小生成树

    [PA2014]Kuglarz Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1335  Solved: 672[Submit][Status][Di ...

  5. [bzoj3714] [PA2014] Kuglarz(最小生成树)

    我们考虑这个题...思路比较神仙. 就是我们设\(sum[i]\)为前i个的区间里的情况,然后我们知道\(sum[j]\)的话,我们就可以知道\(j-i\)的情况了 所以说这很像最小生成树里面的约束条 ...

  6. 【kruscal】【最小生成树】【并查集扩展】bzoj3714 [PA2014]Kuglarz

    ORZ:http://www.cnblogs.com/zrts/p/bzoj3714.html #include<cstdio> #include<algorithm> usi ...

  7. [BZOJ3714][PA2014]Kuglarz(MST)

    题目: Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子 ...

  8. 【BZOJ3714】Kuglarz(最小生成树)

    [BZOJ3714]Kuglarz(最小生成树) 题面 BZOJ Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯 ...

  9. [PA2014]Kuglarz

    [PA2014]Kuglarz 题目大意: 有一个长度为\(n(n\le2000)\)的0/1串,你可以花\(c_{i,j}\)的钱,询问区间\([i,j]\)的异或和.问至少要多少元才能知道原来的序 ...

随机推荐

  1. 请求头(request)和响应头(response)

    说一说常见的请求头和相应头都有什么呢? 1)请求(客户端->服务端[request]) GET(请求的方式) /newcoder/hello.html(请求的目标资源) HTTP/1.1(请求采 ...

  2. 180611-Spring之RedisTemplate配置与使用

        logo 文章链接:https://liuyueyi.github.io/hexblog/2018/06/11/180611-Spring之RedisTemplate配置与使用/ Spring ...

  3. 即刻开始使用Kotlin开发Android的12个原因(KAD 30)

    作者:Antonio Leiva 时间:Jul, 11, 2017 原文链接:https://antonioleiva.com/reasons-kotlin-android/ 这组文章已到最后了,它们 ...

  4. 新的征程 in ZJU

    争取考上了心仪的学校 并进入了心仪的实验室 但是对我来说,未来将是更多的挑战 首先我觉得我学习能力还是不足,无法做到一天的高效率学习 实验室的方向是可视化,我觉得这个是个非常复杂的方向 数学,pyth ...

  5. 前端开发工程师 - 01.页面制作 - 第1章.Photoshop切图

    第1章--Photoshop切图 工具.面板.视图 什么是切图? 1. 从设计稿(.psd)中切出网络素材,如按钮.图标.logo.背景图等 2. 编写代码,在代码中使用图片,生成静态页面 --给网页 ...

  6. python中为什么 if/while/def/class语句需要冒号?

    python中冒号主要用于增强可读性(ABC语言实验的结果之一).考虑一下这个: if a == b print(a) 与 if a == b: print(a) 注意第二种方法稍微容易一些.请进一步 ...

  7. ionic 获取input的值

    1.参数传递法 例子:获取input框内容 这里有个独特的地方,直接在input处使用 #定义参数的name值,注意在ts中参数的类型 在html页面中 <ion-input type=&quo ...

  8. Python3 Tkinter-Frame

    1.创建 from tkinter import * root=Tk() for fm in ['red','blue','yellow','green','white','black']: Fram ...

  9. POJ 2177 Ghost Busters(三维几何)

    Description The famous Ghost Busters team has decided to upgrade their Ectomobile (aka Ecto-1) with ...

  10. 硬件原理图Checklist检查表(通用版)

    类别 描述 检视规则 原理图需要进行检视,提交集体检视是需要完成自检,确保没有低级问题. 检视规则 原理图要和公司团队和可以邀请的专家一起进行检视. 检视规则 第一次原理图发出进行集体检视后所有的修改 ...