理解mini-batch梯度下降法

使用batch梯度下降法时,每次迭代都需要历遍整个训练集,可以预期每次迭代成本都会下降,所以如果成本函数\(J\)是迭代次数的一个函数,它应该会随着每次迭代而减少,如果\(J\)在某次迭代中增加了,那肯定出了问题,也许的学习率太大。

使用mini-batch梯度下降法,如果作出成本函数在整个过程中的图,则并不是每次迭代都是下降的,特别是在每次迭代中,要处理的是\(X^{\{t\}}\)和\(Y^{\{ t\}}\),如果要作出成本函数\(J^{\{ t\}}\)的图,而\(J^{\{t\}}\)只和\(X^{\{ t\}}\),\(Y^{\{t\}}\)有关,也就是每次迭代下都在训练不同的样本集或者说训练不同的mini-batch,如果要作出成本函数\(J\)的图,很可能会看到这样的结果,走向朝下,但有更多的噪声,所以如果作出\(J^{\{t\}}\)的图,因为在训练mini-batch梯度下降法时,会经过多代,可能会看到这样的曲线。没有每次迭代都下降是不要紧的,但走势应该向下,噪声产生的原因在于也许\(X^{\{1\}}\)和\(Y^{\{1\}}\)是比较容易计算的mini-batch,因此成本会低一些。不过也许出于偶然,\(X^{\{2\}}\)和\(Y^{\{2\}}\)是比较难运算的mini-batch,或许需要一些残缺的样本,这样一来,成本会更高一些,所以才会出现这些摆动,因为是在运行mini-batch梯度下降法作出成本函数图。

需要决定的变量之一是mini-batch的大小,\(m\)就是训练集的大小,极端情况下,如果mini-batch的大小等于\(m\),其实就是batch梯度下降法,在这种极端情况下,就有了mini-batch \(X^{\{1\}}\)和\(Y^{\{1\}}\),并且该mini-batch等于整个训练集,所以把mini-batch大小设为\(m\)可以得到batch梯度下降法。

另一个极端情况,假设mini-batch大小为1,就有了新的算法,叫做随机梯度下降法,每个样本都是独立的mini-batch,当看第一个mini-batch,也就是\(X^{\{1\}}\)和\(Y^{\{1\}}\),如果mini-batch大小为1,它就是的第一个训练样本,这就是的第一个训练样本。接着再看第二个mini-batch,也就是第二个训练样本,采取梯度下降步骤,然后是第三个训练样本,以此类推,一次只处理一个。

看在两种极端下成本函数的优化情况,如果这是想要最小化的成本函数的轮廓,最小值在那里,batch梯度下降法从某处开始,相对噪声低些,幅度也大一些,可以继续找最小值。

相反,在随机梯度下降法中,从某一点开始,重新选取一个起始点,每次迭代,只对一个样本进行梯度下降,大部分时候向着全局最小值靠近,有时候会远离最小值,因为那个样本恰好给指的方向不对,因此随机梯度下降法是有很多噪声的,平均来看,它最终会靠近最小值,不过有时候也会方向错误,因为随机梯度下降法永远不会收敛,而是会一直在最小值附近波动,但它并不会在达到最小值并停留在此。

实际上选择的mini-batch大小在二者之间,大小在1和\(m\)之间,而1太小了,\(m\)太大了,原因在于如果使用batch梯度下降法,mini-batch的大小为\(m\),每个迭代需要处理大量训练样本,该算法的主要弊端在于特别是在训练样本数量巨大的时候,单次迭代耗时太长。如果训练样本不大,batch梯度下降法运行地很好。

相反,如果使用随机梯度下降法,如果只要处理一个样本,那这个方法很好,这样做没有问题,通过减小学习率,噪声会被改善或有所减小,但随机梯度下降法的一大缺点是,会失去所有向量化带给的加速,因为一次性只处理了一个训练样本,这样效率过于低下,所以实践中最好选择不大不小的mini-batch尺寸,实际上学习率达到最快。会发现两个好处,一方面,得到了大量向量化,上个视频中用过的例子中,如果mini-batch大小为1000个样本,就可以对1000个样本向量化,比一次性处理多个样本快得多。另一方面,不需要等待整个训练集被处理完就可以开始进行后续工作,再用一下上个视频的数字,每次训练集允许采取5000个梯度下降步骤,所以实际上一些位于中间的mini-batch大小效果最好。

mini-batch梯度下降法,从这里开始,一次迭代这样做,两次,三次,四次,它不会总朝向最小值靠近,但它比随机梯度下降要更持续地靠近最小值的方向,它也不一定在很小的范围内收敛或者波动,如果出现这个问题,可以慢慢减少学习率,在下个视频会讲到学习率衰减,也就是如何减小学习率。

如果mini-batch大小既不是1也不是\(m\),应该取中间值,那应该怎么选择呢?其实是有指导原则的。

首先,如果训练集较小,直接使用batch梯度下降法,样本集较小就没必要使用mini-batch梯度下降法,可以快速处理整个训练集,所以使用batch梯度下降法也很好,这里的少是说小于2000个样本,这样比较适合使用batch梯度下降法。不然,样本数目较大的话,一般的mini-batch大小为64到512,考虑到电脑内存设置和使用的方式,如果mini-batch大小是2的\(n\)次方,代码会运行地快一些,64就是2的6次方,以此类推,128是2的7次方,256是2的8次方,512是2的9次方。所以经常把mini-batch大小设成2的次方。在上一个视频里,的mini-batch大小设为了1000,建议可以试一下1024,也就是2的10次方。也有mini-batch的大小为1024,不过比较少见,64到512的mini-batch比较常见。

最后需要注意的是在的mini-batch中,要确保\(X^{\{ t\}}\)和\(Y^{\{t\}}\)要符合CPU/GPU内存,取决于的应用方向以及训练集的大小。如果处理的mini-batchCPU/GPU内存不相符,不管用什么方法处理数据,会注意到算法的表现急转直下变得惨不忍睹,所以希望对一般人们使用的mini-batch大小有一个直观了解。事实上mini-batch大小是另一个重要的变量,需要做一个快速尝试,才能找到能够最有效地减少成本函数的那个,一般会尝试几个不同的值,几个不同的2次方,然后看能否找到一个让梯度下降优化算法最高效的大小。希望这些能够指导如何开始找到这一数值。

学会了如何执行mini-batch梯度下降,令算法运行得更快,特别是在训练样本数目较大的情况下。

神经网络优化篇:理解mini-batch梯度下降法(Understanding mini-batch gradient descent)的更多相关文章

  1. batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)

    批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...

  2. 斯坦福机器学习视频笔记 Week1 线性回归和梯度下降 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

  3. 神经网络优化算法:Dropout、梯度消失/爆炸、Adam优化算法,一篇就够了!

    1. 训练误差和泛化误差 机器学习模型在训练数据集和测试数据集上的表现.如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不⼀定更准确.这是为什么呢 ...

  4. Gradient Descent 梯度下降法-R实现

    梯度下降法: [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 应用:求线性回归方程的系数 目标:最小化损失 ...

  5. 梯度下降法Gradient descent(最速下降法Steepest Descent)

    最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向  d=−gk

  6. [DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 mini-batch gradient descent mini-batch梯度下降法 我们将训练数据组合到一个大的矩阵中 \(X=\b ...

  7. <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本

    梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...

  8. 批量梯度下降(Batch gradient descent) C++

    At each step the weight vector is moved in the direction of the greatest rate of decrease of the err ...

  9. 神经网络优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam

    1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型 ...

  10. 神经网络优化算法:梯度下降法、Momentum、RMSprop和Adam

    最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结.吴恩达的深度 ...

随机推荐

  1. Flask框架——模板、数据库ORM

    文章目录 1 模板 1 重定向 1.1 什么是重定向? 1.2 为什么要有重定向? 1.3 如何使用重定向? 1.3.1 暂时性重定向(代码实例): 1.3.2 永久性重定向(代码实例) 2 jinj ...

  2. CMake中添加 -lpthread 编译参数

    问题:当在linux命令行中编译关于进程/线程的源文件时,需要加上 -lpthread 参数动态链接线程库而在CMake中如何加入呢? 方法:只需在 add_executable() 命令前面加上以下 ...

  3. RocketMQ为什么要保证订阅关系一致

    这篇文章,笔者想聊聊 RocketMQ 最佳实践之一:保证订阅关系一致. 订阅关系一致指的是同一个消费者 Group ID 下所有 Consumer 实例所订阅的 Topic .Tag 必须完全一致. ...

  4. Anaconda虚拟环境配置Python库与Spyder编译器

      本文介绍在Anaconda中,为Python的虚拟环境安装第三方库与Spyder等配套软件的方法.   在文章创建Anaconda虚拟Python环境的方法中,我们介绍了在Anaconda环境下, ...

  5. .NET高性能开发-位图索引(一)

    首先来假设这样一个业务场景,大家对于飞机票应该不陌生,大家在购买机票时,首先是选择您期望的起抵城市和时间,然后选择舱等(公务舱.经济舱),点击查询以后就会出现航班列表,随意的点击一个航班,可以发现有非 ...

  6. 【虹科干货】Redis Enterprise vs ElastiCache——如何选择缓存解决方案?

    使用Redis 或 Amazon ElastiCache 来作为缓存加速已经是业界主流的解决方案,二者各有什么优势?又有哪些区别呢? 为了提高 Web 应用程序和数据驱动服务的性能与效率,使用 Red ...

  7. Jenkins-插件安装-多实例

    1,Jenkins插件安装: Jenkins最大的功能莫过于插件丰富,基于各种插件可以满足各项需求,Jenkins本身是一个框架,真正发挥作用的各种插件.Jenkins默认自带很多插件,如果没有添加新 ...

  8. unity2017自定义编译dll

    适用于自定义编译平台和编译符合,把C#源码文件编译成dll.(用于InjectFix之类的热更方案) 适用于unity2017环境,代码暂时不方便贴出记述一下思路. 参考:Unity官方C#源码 ht ...

  9. Unity - UIWidgets 1. 从Hello world开始

    安装参照github的README.UIWidgets相当于Flutter的一个Unity实现(后面表示UIWidgets和UGUI区别时直接称"Flutter"),是把承载的所有 ...

  10. 20.3 OpenSSL 对称AES加解密算法

    AES算法是一种对称加密算法,全称为高级加密标准(Advanced Encryption Standard).它是一种分组密码,以128比特为一个分组进行加密,其密钥长度可以是128比特.192比特或 ...