神经网络优化篇:详解超参数调试的实践:Pandas VS Caviar(Hyperparameters tuning in practice: Pandas vs. Caviar)
超参数调试的实践

如今的深度学习已经应用到许多不同的领域,某个应用领域的超参数设定,有可能通用于另一领域,不同的应用领域出现相互交融。比如,曾经看到过计算机视觉领域中涌现的巧妙方法,比如说Confonets或ResNets。它还成功应用于语音识别,还看到过最初起源于语音识别的想法成功应用于NLP等等。
深度学习领域中,发展很好的一点是,不同应用领域的人们会阅读越来越多其它研究领域的文章,跨领域去寻找灵感。
就超参数的设定而言,见到过有些直觉想法变得很缺乏新意,所以,即使只研究一个问题,比如说逻辑学,也许已经找到一组很好的参数设置,并继续发展算法,或许在几个月的过程中,观察到的数据会逐渐改变,或也许只是在的数据中心更新了服务器,正因为有了这些变化,原来的超参数的设定不再好用,所以建议,或许只是重新测试或评估的超参数,至少每隔几个月一次,以确保对数值依然很满意。
最后,关于如何搜索超参数的问题,见过大概两种重要的思想流派或人们通常采用的两种重要但不同的方式。

一种是照看一个模型,通常是有庞大的数据组,但没有许多计算资源或足够的CPU和GPU的前提下,基本而言,只可以一次负担起试验一个模型或一小批模型,在这种情况下,即使当它在试验时,也可以逐渐改良。比如,第0天,将随机参数初始化,然后开始试验,然后逐渐观察自己的学习曲线,也许是损失函数J,或者数据设置误差或其它的东西,在第1天内逐渐减少,那这一天末的时候,可能会说,看,它学习得真不错。试着增加一点学习速率,看看它会怎样,也许结果证明它做得更好,那是第二天的表现。两天后,会说,它依旧做得不错,也许现在可以填充下Momentum或减少变量。然后进入第三天,每天,都会观察它,不断调整的参数。也许有一天,会发现的学习率太大了,所以可能又回归之前的模型,像这样,但可以说是在每天花时间照看此模型,即使是它在许多天或许多星期的试验过程中。所以这是一个人们照料一个模型的方法,观察它的表现,耐心地调试学习率,但那通常是因为没有足够的计算能力,不能在同一时间试验大量模型时才采取的办法。

另一种方法则是同时试验多种模型,设置了一些超参数,尽管让它自己运行,或者是一天甚至多天,然后会获得像这样的学习曲线,这可以是损失函数J或实验误差或损失或数据误差的损失,但都是曲线轨迹的度量。同时可以开始一个有着不同超参数设定的不同模型,所以,的第二个模型会生成一个不同的学习曲线,也许是像这样的一条(紫色曲线),会说这条看起来更好些。与此同时,可以试验第三种模型,其可能产生一条像这样的学习曲线(红色曲线),还有另一条(绿色曲线),也许这条有所偏离,像这样,等等。或者可以同时平行试验许多不同的模型,橙色的线就是不同的模型。用这种方式可以试验许多不同的参数设定,然后只是最后快速选择工作效果最好的那个。在这个例子中,也许这条看起来是最好的(下方绿色曲线)。

打个比方,把左边的方法称为熊猫方式。当熊猫有了孩子,他们的孩子非常少,一次通常只有一个,然后他们花费很多精力抚养熊猫宝宝以确保其能成活,所以,这的确是一种照料,一种模型类似于一只熊猫宝宝。对比而言,右边的方式更像鱼类的行为,称之为鱼子酱方式。在交配季节,有些鱼类会产下一亿颗卵,但鱼类繁殖的方式是,它们会产生很多卵,但不对其中任何一个多加照料,只是希望其中一个,或其中一群,能够表现出色。这就是哺乳动物繁衍和鱼类,很多爬虫类动物繁衍的区别。将称之为熊猫方式与鱼子酱方式,因为这很有趣,更容易记住。
所以这两种方式的选择,是由拥有的计算资源决定的,如果拥有足够的计算机去平行试验许多模型,那绝对采用鱼子酱方式,尝试许多不同的超参数,看效果怎么样。但在一些应用领域,比如在线广告设置和计算机视觉应用领域,那里的数据太多了,需要试验大量的模型,所以同时试验大量的模型是很困难的,它的确是依赖于应用的过程。但看到那些应用熊猫方式多一些的组织,那里,会像对婴儿一样照看一个模型,调试参数,试着让它工作运转。尽管,当然,甚至是在熊猫方式中,试验一个模型,观察它工作与否,也许第二或第三个星期后,也许应该建立一个不同的模型(绿色曲线),像熊猫那样照料它,猜,这样一生中可以培育几个孩子,即使它们一次只有一个孩子或孩子的数量很少。

所以希望能学会如何进行超参数的搜索过程,现在,还有另一种技巧,能使的神经网络变得更加坚实,它并不是对所有的神经网络都适用,但当适用时,它可以使超参数搜索变得容易许多并加速试验过程,下篇介绍。
神经网络优化篇:详解超参数调试的实践:Pandas VS Caviar(Hyperparameters tuning in practice: Pandas vs. Caviar)的更多相关文章
- ng-深度学习-课程笔记-8: 超参数调试,Batch正则(Week3)
1 调试处理( tuning process ) 如下图所示,ng认为学习速率α是需要调试的最重要的超参数. 其次重要的是momentum算法的β参数(一般设为0.9),隐藏单元数和mini-batc ...
- Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化
目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...
- PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明
PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载 中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...
- 走向DBA[MSSQL篇] 详解游标
原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...
- Scala进阶之路-Scala函数篇详解
Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...
- 改善深层神经网络(三)超参数调试、Batch正则化和程序框架
1.超参数调试: (1)超参数寻找策略: 对于所有超参数遍历求最优参数不可取,因为超参数的个数可能很多,可选的数据过于庞大. 由于最优参数周围的参数也可能比较好,所以可取的方法是:在一定的尺度范围内随 ...
- [转]javascript console 函数详解 js开发调试的利器
javascript console 函数详解 js开发调试的利器 分步阅读 Console 是用于显示 JS和 DOM 对象信息的单独窗口.并且向 JS 中注入1个 console 对象,使用该 ...
- 吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架
3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色 ...
- nginx的proxy模块详解以及参数
文章来源 运维公会:nginx的proxy模块详解以及参数 使用nginx配置代理的时候,肯定是要用到http_proxy模块.这个模块也是在安装nginx的时候默认安装.它的作用就是将请求转发到相应 ...
- Transform详解(超详细) Attention is all you need论文
一.背景 自从Attention机制在提出 之后,加入Attention的Seq2 Seq模型在各个任务上都有了提升,所以现在的seq2seq模型指的都是结合rnn和attention的模型.传统的基 ...
随机推荐
- 5步教你将MRS数据导入DWS
摘要:GaussDB(DWS)支持在相同网络中,配置一个GaussDB(DWS)集群连接到一个MRS集群,然后将数据从HDFS中的文件读取到GaussDB(DWS). MapReduce服务(MapR ...
- 适合新手的12个Mybatis-Plus常用注解
摘要:MyBatis-Plus(简称 MP)是一个 MyBatis的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生. 本文分享自华为云社区<那些年,我们一起学过 ...
- 云图说|ROMA演进史:一个ROMA与应用之间不得不说的故事
阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说).深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云.更多精彩内容请单击此处. 摘要: 华为云ROMA源 ...
- 探索SaaS产业发展新机遇|鲁班会贵安首秀圆满收官
摘要:2021年12月28日-12月29日,华为云·核心伙伴开发者训练营(第八期)-SaaS应用构建实践专场在华为贵安数据中心召开. 当前,在数字化新兴技术和数字化转型的热潮的引领下,SaaS业务应用 ...
- Git hooks与自动化部署
好的 commit message 是至关重要的,如果随意编写 log,带来的后果可小可大,但是无论大小都影响了开发的效率和回朔的难度,所以有必要进行 log 规范化检查. 通过自定义的commit ...
- 高性能 Jsonpath 框架,Snack3 v3.2.44 发布
Snack3,一个高性能的 JsonPath 框架 借鉴了 Javascript 所有变量由 var 申明,及 Xml dom 一切都是 Node 的设计.其下一切数据都以ONode表示,ONode也 ...
- Office 看不了激活更改产品密钥
Office 看不了激活更改产品密钥 解决方案: PatchOffice.rar - 蓝奏云 将文件解压到桌面 >>> 右击,以管理员方式运行或双击运行均可 >>> ...
- Kubernetes(K8S) yaml 介绍
使用空格做为缩进 缩进的空格数目不重要, 只要相同层级的元素左侧对齐即可 低版本缩进时不允许使用 Tab 键, 只允许使用空格 使用#标识注释, 从这个字符一直到行尾, 都会被解释器忽略 --- 使用 ...
- 关于改造维护工单BAPI_ALM_ORDER_MAINTAIN用于生产订单组件批量修改
1.研究背景 1.1.业务背景 由于销售.研发.工艺等需要频繁变更,导致工单中组件需要频繁的进行变更,修改组件的物料,数量,库存地点,工序等内容. 1.2.技术痛点 为了满足要求,使用了函数:CO_X ...
- 版本升级 | 兼容VSCode及全系IDE,代码风险一键查询
OpenSCA插件上新啦~ Jetbrains IDE插件全新升级,很多朋友提了需求的VSCode咱也支持上啦~ 当然,CEC-IDE也是兼容的(手动狗头). OpenSCA-VSCode-plugi ...