写在前边

链接:Codeforces Round #707 (Div. 2)

心态真的越来越不好了,看A没看懂,赛后模拟了一遍就过了,B很简单,但是漏了个判断重复的条件。

A. Alexey and Train

链接:A题链接

题目大意:

不想说了,题目看了半天没看懂,心态又看炸了。

思路

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <map>
#include <cstring> //#pragma GCC optimize(2)
//#pragma GCC optimize(3,"Ofast","inline") using namespace std; #define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'
#define pub push_back
#define pob pop_back typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI; const int Mod = 1000000007; LL gcd(LL a, LL b) {
return b ? gcd(b, a % b) : a;
} const int N = 110;
int a[N], b[N], tm[N]; void solve() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i] >> b[i];
}
for (int i = 1; i <= n; i++) {
cin >> tm[i];
}
int moment = 0;
for (int i = 1; i <= n; i++) {
moment = moment + a[i] - b[i - 1] + tm[i];
if (i == n) break;
int wait = (b[i] - a[i] + 1) / 2;
moment += wait;
if (moment >= b[i]) continue;
else moment = b[i];
} cout << moment << endl;
} int main()
{
//ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int t;
scanf("%d", &t);
while (t--) {
solve();
}
return 0;
}

B. Napoleon Cake

链接:B题链接

题目大意:

就是往n层蛋糕上涂奶油,看最后有哪些层被奶油浸透。

思路

  1. 双指针。

    倒序枚举,枚举到一个涂有奶油的层,那么比它小的\(i - a[i] + 1\)都会被浸透,同时要注意如果遇到一个奶油更多的应该更新一下,比如1 0 0 0 4 3这个数据,枚举到3的时候,我们知道它能将蛋糕变成1 0 0 1 1 1,但是由于它的前边还有一个更厚的奶油,会使得蛋糕变成1 1 1 1 1 1所以应该要判断一下,详细说不清,看代码吧,主要要判断是否越界!
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <map>
#include <cstring> //#pragma GCC optimize(2)
//#pragma GCC optimize(3,"Ofast","inline") using namespace std; #define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'
#define pub push_back
#define pob pop_back typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI; const int Mod = 1000000007; LL gcd(LL a, LL b) {
return b ? gcd(b, a % b) : a;
} const int N = 2e5 + 10;
int a[N];
bool st[N]; void solve() {
memset(st, false, sizeof(st));
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
} for (int i = n; i >= 1; i--) {
if (a[i] > 0) {
int j = i;
int temp = a[i];
while (temp) {
st[j] = true;
temp--;
j--;
if (j <= 0) break;
if (a[j] >= temp) break;
}
i = j + 1;
}
} for (int i = 1; i <= n; i++) {
if (st[i]) printf("%d ", 1);
else printf("%d ", 0);
}
cout << endl;
} int main()
{
//ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int t;
scanf("%d", &t);
while (t--) {
solve();
}
return 0;
}

2.差分

让\(b[i + 1]--\), 让\(b[max(i - a[i] + 1, 1)]++\) 也挺巧妙。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <map>
#include <cstring> //#pragma GCC optimize(2)
//#pragma GCC optimize(3,"Ofast","inline") using namespace std; #define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'
#define pub push_back
#define pob pop_back typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI; const int Mod = 1000000007; const int N = 2E5 + 10;
int b[N], n, a[N]; void solve() {
memset(b, 0, sizeof(b));
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) {
b[i + 1]--;
b[max(i - a[i] + 1, 1)]++;
} for (int i = 1; i <= n; i++) b[i] += b[i - 1];
for (int i = 1; i <= n; i++) printf("%d ", (b[i] > 1 ? 1 : b[i]));
puts("");
} int main()
{
//ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int t;
scanf("%d", &t);
while (t--) {
solve();
}
return 0;
}

C. Going Home

链接:C题链接

题目大意:

给定\(n\)个数,找出四个坐标\(x,y,z,w\)使得\(a_x + a_y = a_z + z_w\)

思路

这个题是真的没想到,暴力\(O(n^2)\)随便过,原理是抽屉原理,比如有8个苹果7个箱子,现在将苹果全部装入箱子,那么至少有一个箱子有两个苹果,而现在给了N个数,那么我们可以有\(N * (N - 1) / 2\)个对,如果\(\cfrac{N * (N - 1)}{2} > 5,000,000\),那么其中必然有和相同的对。一共可以枚举出\(\cfrac{n*(n - 1)}{2}\)个数对,但是由于两个数最大之和为\(5*10^6\),我们所能枚举到的和的个数最多也就是\(5*10^6\),我们可以把先枚举到的和存到一个数组里,而最多枚举到\(5*10^6\)个数我们就能接着枚举到一个重复的和,而大部分情况下根本不用枚举到\(5*10^6\)个数我们就能枚举到一个已经存在的数,那么跳出循环即可,所以复杂度就是\(O(min(n^2, n + c))\),做过好几个类似的题了,都是可以通过判断出最大枚举范围然后直接暴力来做的。

代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <map>
#include <cstring> //#pragma GCC optimize(2)
//#pragma GCC optimize(3,"Ofast","inline") using namespace std; #define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'
#define pub push_back
#define pob pop_back typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI; const int Mod = 1000000007; const int N = 2e5 + 10, M = 5e6 + 10;
int a[N];
PII temp[M]; void solve() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for (int i = 1; i <= n - 1; i++) {
for (int j = i + 1; j <= n; j++) {
int t = a[i] + a[j];
if (temp[t].first == 0 || temp[t].second == 0) {
temp[t] = {i, j};
continue;
} else {
if (temp[t].first != i && temp[t].first != j && temp[t].second != i && temp[t].second != j) {
puts("YES");
printf("%d %d %d %d\n", temp[t].first, temp[t].second, i, j);
return;
}
}
}
} puts("NO");
} int main()
{
//ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
solve();
return 0;
}

Codeforces Round #707 (Div. 2)A~C题解的更多相关文章

  1. Codeforces Round #612 (Div. 2) 前四题题解

    这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...

  2. Codeforces Round #198 (Div. 2)A,B题解

    Codeforces Round #198 (Div. 2) 昨天看到奋斗群的群赛,好奇的去做了一下, 大概花了3个小时Ak,我大概可以退役了吧 那下面来稍微总结一下 A. The Wall Iahu ...

  3. Codeforces Round #672 (Div. 2) A - C1题解

    [Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...

  4. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  5. Codeforces Round #610 (Div. 2) A-E简要题解

    contest链接: https://codeforces.com/contest/1282 A. Temporarily unavailable 题意: 给一个区间L,R通有网络,有个点x,在x+r ...

  6. Codeforces Round #611 (Div. 3) A-F简要题解

    contest链接:https://codeforces.com/contest/1283 A. Minutes Before the New Year 题意:给一个当前时间,输出离第二天差多少分钟 ...

  7. Codeforces Round #499 (Div. 2) D. Rocket题解

    题目: http://codeforces.com/contest/1011/problem/D This is an interactive problem. Natasha is going to ...

  8. Codeforces Round #499 (Div. 2) C Fly题解

    题目 http://codeforces.com/contest/1011/problem/C Natasha is going to fly on a rocket to Mars and retu ...

  9. Codeforces Round #198 (Div. 2)C,D题解

    接着是C,D的题解 C. Tourist Problem Iahub is a big fan of tourists. He wants to become a tourist himself, s ...

  10. Codeforces Round #579 (Div. 3) 套题 题解

    A. Circle of Students      题目:https://codeforces.com/contest/1203/problem/A 题意:一堆人坐成一个环,问能否按逆时针或者顺时针 ...

随机推荐

  1. 关于python pycharm中输出的内容不全的解决办法

    import pandas as pd #设置显示的最大列.宽等参数,消除打印不完全中间的省略号 pd.set_option("display.width",1000) #加了这一 ...

  2. 在Volo.Abp微服务中使用SignalR

    假设需要通过SignalR发送消息通知,并在前端接收消息通知的功能 创建SignalR服务 在项目中引用 abp add-package Volo.Abp.AspNetCore.SignalR 在Mo ...

  3. Unity的UnityStats: 属性详解与实用案例

    UnityStats 属性详解 UnityStats 是 Unity 引擎提供的一个用于监测游戏性能的工具,它提供了一系列的属性值,可以帮助开发者解游戏的运行情况,从而进行优化.本文将详细介绍 Uni ...

  4. CF1787E The Harmonization of XOR 题解

    CF1787E The Harmonization of XOR 题目大意 给定 \(n\) 个数 \([1, 2, 3, \cdots, n]\) 和两个正整数 \(k\) 和 \(x\). 将这些 ...

  5. 【故障公告】多年的故障老朋友又来了:数据库服务器 CPU 100%

    数据库服务器 CPU 100% 问题几乎每年都要来几次,从来都不事先打一声招呼,今年的第2次在我们正忙着会员救园的时候来了. 今天 13:35 首先收到我们自己的异常告警通知: Execution T ...

  6. 5、Spring之bean的作用域和生命周期

    5.1.bean的作用域 5.1.1.单例(默认且常用) 5.1.1.1.配置bean 注意:当bean不配置scope属性时,默认是singleton(单例) <?xml version=&q ...

  7. 《Kali渗透基础》09. 漏洞利用、后渗透

    @ 目录 1:漏洞基本介绍 1.1:漏洞从哪里来 1.2:缓冲区溢出 1.3:如何发现漏洞 2:漏洞利用 2.1:EXP 选择与修改 2.2:避免有害的 EXP 3:后渗透阶段 3.1:Linux 上 ...

  8. 《CTFshow-Web入门》04. Web 31~40

    @ 目录 web31 题解 原理 web32 题解 原理 web33 题解 web34 题解 web35 题解 web36 题解 web37 题解 原理 web38 题解 原理 web39 题解 we ...

  9. C# Wke使用例子 (KyozyWke)

    概述 wke是国人大牛BlzFans封装的webkit, 基于chrome浏览器源代码的裁剪版本, 大小只有仅仅10M. 无需依赖其他的扩展库就可以在本地使用谷歌内核快速加载网页. wke是2011年 ...

  10. Java 21 新特性:Record Patterns

    Record Patterns 第一次发布预览是在JDK 19.随后又在JDK 20中进行了完善.现在,Java 21开始正式推出该特性优化.下面我们通过一个例子来理解这个新特性. record Po ...