原文地址:

https://towardsdatascience.com/why-you-are-using-t-sne-wrong-502412aab0c0

=====================================

Source: https://datascienceplus.com/multi-dimensional-reduction-and-visualisation-with-t-sne/

t-SNE has become a very popular technique for visualizing high dimensional data. It’s extremely common to take the features from an inner layer of a deep learning model and plot them in 2-dimensions using t-SNE to reduce the dimensionality. Unfortunately, most people just use scikit-learn’s implementation without actually understanding the results and misinterpreting what they mean.

While t-SNE is a dimensionality reduction technique, it is mostly used for visualization and not data pre-processing (like you might with PCA). For this reason, you almost always reduce the dimensionality down to 2 with t-SNE, so that you can then plot the data in two dimensions.

The reason t-SNE is common for visualization is that the goal of the algorithm is to take your high dimensional data and represent it correctly in lower dimensions — thus points that are close in high dimensions should remain close in low dimensions. It does this in a non-linear and local way, so different regions of data could be transformed differently.

t-SNE has a hyper-parameter called perplexity. Perplexity balances the attention t-SNE gives to local and global aspects of the data and can have large effects on the resulting plot. A few notes on this parameter:

  • It is roughly a guess of the number of close neighbors each point has. Thus, a denser dataset usually requires a higher perplexity value.
  • It is recommended to be between 5 and 50.
  • It should be smaller than the number of data points.

The biggest mistake people make with t-SNE is only using one value for perplexity and not testing how the results change with other values. If choosing different values between 5 and 50 significantly change your interpretation of the data, then you should consider other ways to visualize or validate your hypothesis.

It is also overlooked that since t-SNE uses gradient descent, you also have to tune appropriate values for your learning rate and the number of steps for the optimizer. The key is to make sure the algorithm runs long enough to stabilize.

There is an incredibly good article on t-SNE that discusses much of the above as well as the following points that you need to be aware of:

  • You cannot see the relative sizes of clusters in a t-SNE plot. This point is crucial to understand as t-SNE naturally expands dense clusters and shrinks spares ones. I often see people draw inferences by comparing the relative sizes of clusters in the visualization. Don’t make this mistake.
  • Distances between well-separated clusters in a t-SNE plot may mean nothing. Another common fallacy. So don’t necessarily be dismayed if your “beach” cluster is closer to your “city” cluster than your “lake” cluster.
  • Clumps of points — especially with small perplexity values — might just be noise. It is important to be careful when using small perplexity values for this reason. And to remember to always test many perplexity values for robustness.

Now — as promised some code! A few things of note with this code:

  • I first reduce the dimensionality to 50 using PCA before running t-SNE. I have found that to be good practice (when having over 50 features) because otherwise, t-SNE will take forever to run.
  • I don’t show various values for perplexity as mentioned above. I will leave that as an exercise for the reader. Just run the t-SNE code a few more times with different perplexity values and compare visualizations.
from sklearn.datasets import fetch_mldata
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# get mnist data
mnist = fetch_mldata("MNIST original")
X = mnist.data / 255.0
y = mnist.target
# first reduce dimensionality before feeding to t-sne
pca = PCA(n_components=50)
X_pca = pca.fit_transform(X)
# randomly sample data to run quickly
rows = np.arange(70000)
np.random.shuffle(rows)
n_select = 10000
# reduce dimensionality with t-sne
tsne = TSNE(n_components=2, verbose=1, perplexity=50, n_iter=1000, learning_rate=200)
tsne_results = tsne.fit_transform(X_pca[rows[:n_select],:])
# visualize
df_tsne = pd.DataFrame(tsne_results, columns=['comp1', 'comp2'])
df_tsne['label'] = y[rows[:n_select]]sns.lmplot(x='comp1', y='comp2', data=df_tsne, hue='label', fit_reg=False)

And here is the resulting visualization:

 

=========================================

【转载】 机器学习数据可视化 (t-SNE 使用指南)—— Why You Are Using t-SNE Wrong的更多相关文章

  1. 前端数据可视化echarts.js使用指南

    一.开篇 首先这里要感谢一下我的公司,因为公司需求上面的新颖(奇葩)的需求,让我有幸可以学习到一些好玩有趣的前端技术,前端技术中好玩而且比较实用的我想应该要数前端的数据可视化这一方面,目前市面上的数据 ...

  2. 机器学习-数据可视化神器matplotlib学习之路(五)

    这次准备做一下pandas在画图中的应用,要做数据分析的话这个更为实用,本次要用到的数据是pthon机器学习库sklearn中一组叫iris花的数据,里面组要有4个特征,分别是萼片长度.萼片宽度.花瓣 ...

  3. 机器学习-数据可视化神器matplotlib学习之路(四)

    今天画一下3D图像,首先的另外引用一个包 from mpl_toolkits.mplot3d import Axes3D,接下来画一个球体,首先来看看球体的参数方程吧 (0≤θ≤2π,0≤φ≤π) 然 ...

  4. 机器学习-数据可视化神器matplotlib学习之路(三)

    之前学习了一些通用的画图方法和技巧,这次就学一下其它各种不同类型的图.好了先从散点图开始,上代码: from matplotlib import pyplot as plt import numpy ...

  5. 机器学习-数据可视化神器matplotlib学习之路(二)

    之前学习了matplotlib的一些基本画图方法(查看上一节),这次主要是学习在图中加一些文字和其其它有趣的东西. 先来个最简单的图 from matplotlib import pyplot as ...

  6. 机器学习-数据可视化神器matplotlib学习之路(一)

    直接上代码吧,说明写在备注就好了,这次主要学习一下基本的画图方法和常用的图例图标等 from matplotlib import pyplot as plt import numpy as np #这 ...

  7. Python数据可视化编程实战pdf

    Python数据可视化编程实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1vAvKwCry4P4QeofW-RqZ_A 提取码:9pcd 复制这段内容后打开百度 ...

  8. python数据可视化编程实战PDF高清电子书

    点击获取提取码:3l5m 内容简介 <Python数据可视化编程实战>是一本使用Python实现数据可视化编程的实战指南,介绍了如何使用Python最流行的库,通过60余种方法创建美观的数 ...

  9. Python Seaborn综合指南,成为数据可视化专家

    概述 Seaborn是Python流行的数据可视化库 Seaborn结合了美学和技术,这是数据科学项目中的两个关键要素 了解其Seaborn作原理以及使用它生成的不同的图表 介绍 一个精心设计的可视化 ...

  10. 机器学习PAL数据可视化

    机器学习PAL数据可视化 本文以统计全表信息为例,介绍如何进行数据可视化. 前提条件 完成数据预处理,详情请参见数据预处理. 操作步骤 登录PAI控制台. 在左侧导航栏,选择模型开发和训练 >  ...

随机推荐

  1. 高并发缓存中间件Redis

    https://tech.meituan.com/2020/07/01/kv-squirrel-cellar.html 美团万亿级 KV 存储架构与实践 阿里云 redis文档 https://hel ...

  2. ssh练习

    根据要求完成部署 根据如下要求,完成部署过程 1.恢复7.8.9.31.41所有机器的快照 7 8 9 web服务 nginx ​ 172.16.1.xx ​ ​ nfs-31 提供共享文件存储 ​ ...

  3. Aspect切面进行统一参数处理demo

    Aspect切面进行统一参数处理demo //导入 implementation('org.springframework:spring-aspects:5.3.22') import com.exa ...

  4. float与byte[]互相转换

    今天想利用socket发送数据,可是float类型该怎么发送呢?我的想法是先转换成byte[]型,接收之后再转换回来. float类型是4个字节,而byte是1个字节,所以需要转换成为byte[]的类 ...

  5. .NET 个人博客-给文章添加上标签

    个人博客-给文章添加上标签 优化计划 置顶3个且可滚动或切换 推荐改为4个,然后新增历史文章,将推荐的加载更多放入历史文章,按文章发布时间降序排列. 标签功能,可以为文章贴上标签 推荐点赞功能 本篇文 ...

  6. 超大容量 | 瑞芯微RK3588J工业核心板新增16GB DDR + 128GB eMMC配置!

    作为瑞芯微的金牌合作伙伴,创龙科技在2023年9月即推出搭载瑞芯微旗舰级处理器RK3588J的全国产工业核心板--SOM-TL3588. SOM-TL3588工业核心板是基于瑞芯微RK3588J/RK ...

  7. 【Hadoop】Hadoop集群组件默认端口

    这里包含使用到的组件:HDFS, YARN, HBase, Hive, ZooKeeper: 组件 节点 默认端口 配置 用途说明 HDFS DataNode 50010 dfs.datanode.a ...

  8. ABC195E

    其实我们发现很多博弈论的动态规划都是从后往前的,比如过河卒和本题. 这是因为从某种角度上来说这些动态规划有后效性而无前效性. 所以设计状态 \(dp_{i,j}\) 表示第 \(i\) 次操作 \(T ...

  9. Spring注解之依赖注入@Autowired和@Resource

    Spring常见的DI方式 字段注入(Field Injection) 在字段上使用@Autowired/Resource注解 字段注入是日常开发中使用最多的一种注入方式,它的实现代码如下: @Aut ...

  10. computed 和 watch 的区别和运用的场景?

    computed: 是计算属性,依赖其它属性值,并且 computed 的值有缓存,只有它依赖的属性值发生改变,下一次获取 computed 的值时才会重新计算 computed 的值: watch: ...