题目描述

The Arca Carania Mountain national park is opening up for tourist traffic. The national park has a number of sites worth seeing and roads that connect pairs of sites. The park commissioners have put together a set of round tours in the park in which visitors can ride buses to view various sites. Each round tour starts at some site (potentially different sites for different tours), visits a number of other sites without repeating any, and then returns to where it started. At least 3 different sites are visited in each round tour. At least one round tour is possible in the national park.

The park commissioners have decided that, for any given road, all buses will be operated by a single company. The commissioners do not want to be accused of favoritism, so they want to be sure that each possible round tour in the park has exactly the same number of roads assigned to each bus company. They realize this may be difficult to achieve. Thus, they want to learn what numbers of bus companies allow for a valid assignment of companies to roads.

Consider Sample Input 1, which is illustrated in Figure 1. There are a total of three round tours for these sites. Some company is assigned road 1-3. It must also be assigned some road on the round tour 1-2-3-4-1, say 2-3. But then it is assigned to two of the three roads on the round tour 1-2-3-1, and no other company can match this – so there can be no other companies. In Sample Input 2 there is only one round tour, so it is enough to assign the roads of this tour equally between companies.

Figure 1: Sample Input 1.

输入格式

The first line of input contains two integers \(n\) (\(1 \le n \le 2\, 000\)), which is the number of sites in the park, and \(m\) (\(1 \le m \le 2\, 000\)), which is the number of roads between the sites. Following that are \(m\) lines, each containing two integers \(a_ i\) and \(b_ i\) (\(1 \leq a_ i < b_ i \leq n\)), meaning the sites \(a_ i\) and \(b_ i\) are connected by a bidirectional road. No pair of sites is listed twice.

输出格式

Display all integers \(k\) such that it is possible to assign the roads to \(k\) companies in the desired way. These integers should be in ascending order.

盲猜答案是某个数的所有因数。

如果现在有两个环长度分别为 \(x,y\),他们相交了 \(d\) 个点,那么 \(k|x,y,d\)

扩展一下,设 \(C(S)\) 为被且只被 \(S\) 中的环覆盖的边有 \(C(S)\) 条,那么 \(k|C(S)\)

我们现在就是要求出他们的 gcd.

然后跑出原图的一个生成树,对于一棵不在树上的边 \((u,v)\) ,那么在树上的 \((u,v)\) 这条路径可以全部分裂出来。可以用哈希维护,然后权值不同的边就是属于不同的等价类。同时给不在树上的边随机一个权值 \(w\),并给 \((u,v)\) 这条路径全部异或上 \(w\)。

#include<bits/stdc++.h>
using namespace std;
const int N=2005;
int hd[N],n,m,vs[N],w[N],g[N],u[N],v[N],fa[N][24],f[N],dep[N],d,e_num;
map<int,int>c;
mt19937 gen(time(0));
struct edge{
int v,nxt;
}e[N<<1];
int gcd(int x,int y)
{
if(!y)
return x;
return gcd(y,x%y);
}
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
e[++e_num]=(edge){u,hd[v]};
hd[v]=e_num;
}
void dfs(int x,int y)
{
fa[x][0]=y;
vs[x]=1;
dep[x]=dep[y]+1;
for(int i=1;i<=20;i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=hd[x];i;i=e[i].nxt)
if(e[i].v^y)
dfs(e[i].v,x);
}
void sou(int x,int y)
{
vs[x]=0;
for(int i=hd[x];i;i=e[i].nxt)
if(e[i].v^y)
sou(e[i].v,x),g[x]^=g[e[i].v];
if(g[x])
c[g[x]]++;
}
int find(int x)
{
if(f[x]==x)
return x;
return f[x]=find(f[x]);
}
int lca(int x,int y)
{
if(dep[x]<dep[y])
swap(x,y);
for(int i=20;~i;--i)
if(dep[fa[x][i]]>=dep[y])
x=fa[x][i];
if(x==y)
return x;
for(int i=20;~i;--i)
if(fa[x][i]^fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=m;i++)
{
scanf("%d%d",u+i,v+i);
if(find(u[i])^find(v[i]))
f[find(u[i])]=find(v[i]),add_edge(u[i],v[i]);
else
++c[w[i]=gen()/2];
}
for(int i=1;i<=n;i++)
if(!vs[i])
dfs(i,0);
for(int i=1;i<=m;i++)
if(w[i])
g[u[i]]^=w[i],g[v[i]]^=w[i];
for(int i=1;i<=n;i++)
if(vs[i])
sou(i,0);
for(map<int,int>::iterator it=c.begin();it!=c.end();it++)
d=gcd(d,(*it).second);
for(int i=1;i<=n;i++)
if(d%i==0)
printf("%d ",i);
}

[ICPC2015WF] Tours的更多相关文章

  1. Web Tours自带示例网站无法打开的解决方案

    问题现象: LoadRunner自带的测试样品,旅行社机票预订系统HP Web Tours以下简称为Web Tours. 1.LoadRunner程序的Sample目录下无Web和Web Tours服 ...

  2. URAL 1077 Travelling Tours(统计无向图中环的数目)

    Travelling Tours Time limit: 1.0 secondMemory limit: 64 MB There are N cities numbered from 1 to N ( ...

  3. HP Web Tours分析

    1.启动Web Tours 2.首页结构 3.预定机票

  4. USACO 2.4 Cow Tours

    Cow Tours Farmer John has a number of pastures on his farm. Cow paths connect some pastures with cer ...

  5. 洛谷P1522 牛的旅行 Cow Tours

    ---恢复内容开始--- P1522 牛的旅行 Cow Tours189通过502提交题目提供者该用户不存在标签 图论 USACO难度 提高+/省选-提交该题 讨论 题解 记录 最新讨论 输出格式题目 ...

  6. [Wf2015]Tours

    [Wf2015]Tours 题目 给定一张n个点m条边的无向图,你需要选择一个颜色种类数k,然后用这k种颜色给每条边染色,要求对于图中任意一个简单环,每种颜色的边的数量都相同,求所有可行的k INPU ...

  7. 洛谷 P1522 牛的旅行 Cow Tours 题解

    P1522 牛的旅行 Cow Tours 题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不 ...

  8. 洛谷P1522 [USACO2.4]牛的旅行 Cow Tours

    洛谷P1522 [USACO2.4]牛的旅行 Cow Tours 题意: 给出一些牧区的坐标,以及一个用邻接矩阵表示的牧区之间图.如果两个牧区之间有路存在那么这条路的长度就是两个牧区之间的欧几里得距离 ...

  9. [图论]牛的旅行 Cow Tours :Floyed-Warshall

    牛的旅行 Cow Tours 目录 牛的旅行 Cow Tours 题目描述 输入格式 输出格式 输入输出样例 输入 #1 输出 #1 解析 代码 题目描述 农民 John的农场里有很多牧区.有的路径连 ...

  10. 【USACO 2.4】Cow Tours (最短路)

    题意:给你n(最多150)个点的坐标,给出邻接矩阵,并且整个图至少两个联通块,现在让你连接一条边,使得所有可联通的两点的最短距离的最大值最小. 题解:先dfs染色,再用floyd跑出原图的直径O($n ...

随机推荐

  1. P8810 [蓝桥杯 2022 国 C] 数组个数 题解

    思路比较简单的一道题. 用的五维 dp,看到二维和三维的 dp 直接膜了 orz. 正文开始. 分析 不难看出 dp. 因为 \(b_i\) 的值只与 \(a_{i-1},a_i,a_{i+1}\) ...

  2. Vue【原创】千位符输入框(不仅只是过滤器哦)

    最近和一个做金融的朋友讨论到千位符输入的问题,后来一想貌似自己项目中也会经常碰到金额数字这种输入框,要么自己做一个吧. 首先肯定要有一个正则表达式,也就是过滤器的方案里面常用的正则: 1 filter ...

  3. 问题排查:nginx的反向代理感觉失效了一样

    背景 最近,负责基础设施的同事,要对一批测试环境机器进行回收,回收就涉及到应用迁移,问题是整个过程一团乱.比如服务器A上一堆应用要调用服务器B上一堆服务,结果服务器B被回收了,然后服务器A上一堆应用报 ...

  4. 【升职加薪秘籍】我在服务监控方面的实践(8)-elasticsearch 性能监控与分析手段

    大家好,我是蓝胖子,之前讲了mysql,redis中间件的监控,今天我们再来看看另一个基础组件elasticsearch,如何对它进行监控,当你思考如何对一个组件进行监控时,四大黄金指标会告诉你答案, ...

  5. WPF学习 - 用鼠标移动、缩放、旋转图片(1)

    1. 需求 其实我的需求很简单.就是想做一个图片查看器,可以通过鼠标来平移.缩放.旋转图片. 2. 解决思路: WPF中的UIElement提供了RenderTransform属性,用于承载各种Tra ...

  6. iOS添加图片

    添加一个按钮 将图片添加到

  7. Go语句与表达式深度解析:全案例手册

    关注公众号[TechLeadCloud],分享互联网架构.云服务技术的全维度知识.作者拥有10+年互联网服务架构.AI产品研发经验.团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资 ...

  8. Mysql进击篇-存储引擎、索引、sql优化、视图、锁、innoDb、管理

    1.存储引擎 (1)连接层 最上层是一些客户端和连接服务,主要完成一些类似于连接处理,授权认证.以及相关的安全方案,服务器也会为安全接入的每个客户端验证它所具有的操作权限 (2)服务层 第二层架构主要 ...

  9. Solution -「CF 1096E」The Top Scorer

    Description Link. 小明在打比赛,包括小明自己一共有 \(p\) 名选手参赛,每个人的得分是一个非负整数.最后的冠军是得分最高的人,如果得分最高的人有多个,就等概率从这些人中选一个当冠 ...

  10. Shell 文件或目录操作符(-e、-d、-f、-r、-w、-x)

    操作符 操作符 含义-e 判断对象是否存在(Exist),若存在则结果为真-d 判断对象是否为目录(Directory),是则为真-f 判断对象是否为一般文件(File),是则为真-r 判断对象是否有 ...