也许更好的阅读体验

\(Burnside引理\)

  • 公式
    \(\begin{aligned}L=\frac{1}{|G|}\sum_{i=1}^{|G|}D_{G_i}\end{aligned}\)
  • 一些定义
    \(E_i\) 表示与\(i\)同类的方案
    \(Z_i\) 表示使\(i\)不变的置换
    \(G\) 表示所有的置换方法
    \(D_i\) 表示第\(i\)种置换能使多少方案不变
    \(n\) 表示方案总数
    \(L\) 表示本质不同的方案数
  • 引理的引理
    \(|E_i|*|Z_i|=|G|\) \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个我不会证明
    \(\begin{aligned}n=\sum_{i=1}^{L}{|E_i|}\end{aligned}\)\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个就是按照定义,注意的是\(E_i\)表示的是本质不同的第\(i\)种方案
    \(\begin{aligned}\sum_{i=1}^n|Z_i|=\sum_{i=1}^{|G|}D_{G_i}\end{aligned}\)\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个也是按照定义,就是换了个计算方法,计算的是同样的东西

  • Burnside引理
    \(\begin{aligned}\sum_{j=1}^n|Z_j|=\sum_{i=1}^L\sum_{j \in E_i}|Z_j|=\sum_{i=1}^L|E_i|·|Z_i|=L·|G| \end{aligned}\)
    \(\begin{aligned}\therefore L·|G|=\sum_{j=1}^{|G|}D_{G_i} \end{aligned}\)
    \(\begin{aligned}\therefore L=\frac{1}{|G|}\sum_{i=1}^{|G|}D_{G_i} \end{aligned}\)

\(Polya定理\)

  • 公式
    \(\begin{aligned}L=\frac{1}{|G|}\sum_{i=1}^{|G|}m^{C_{G_i}}\end{aligned}\)
    其中\(m\)为颜色个数,\(C_i\)为第\(i\)种置换有多少个循环

\(一个置换的循环个数\)

一个项链有\(n\)个珠子,用\(k\)种颜色涂染会形成多少种不同的项链
两条可通过旋转得到的项链为相同项链

有\(n\)种置换方式\((\)每次旋转\(0,1,2...n\)个珠子\()\)
对于一次旋转\(i\)个珠子的方式,有\(gcd(i,n)\)个循环
证明
每个循环有的珠子的个数因是一样的
假设从\(x\)号珠子开始置换,循环结束时一定回到\(x\)号珠子 如\(x->(x+i-1)\%n+1->(x+2i-1)\%n+1->x\)
假设循环有\(p\)个珠子,那么循环\(p\)次就回到原来的珠子,此时转过\(i\)和\(n\)的最小公倍数个珠子
\(p·i=i·n/gcd(i,n) \ \ \ k\in Z\)
\(\therefore p=n/gcd(i,n)\)
每个循环有\(p\)个珠子那么就有\(n/p=gcd(i,n)\)个循环

Polya定理与Burnside引理的更多相关文章

  1. 等价类计数问题(Polya定理和burnside引理)

    零.约定: (置换等名词会在前置知识中有解释) \(1.\)在本文中,题目要求的染色方案等统称为"元素". \(2.\)两个元素严格相等我们记做"\(=\)", ...

  2. Burnside引理与Polya定理 学习笔记

    原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序 ...

  3. 【群论】polya定理

    对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...

  4. Polya定理

    http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置 ...

  5. [BZOJ1004] [HNOI2008] Cards (Polya定理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  6. Burnside引理与polay定理

    #Burnside引理与polay定理 引入概念 1.置换 简单来说就是最元素进行重排列 是所有元素的异议映射,即\([1,n]\)映射到\([1,n]\) \[ \begin{pmatrix} 1& ...

  7. 「算法笔记」Polya 定理

    一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...

  8. Burnside引理与Polya定理

    感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运 ...

  9. 等价类计数(Polya定理/Burnside引理)学习笔记

    参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交 ...

随机推荐

  1. 深入了解Windows句柄到底是什么(句柄是逻辑指针,或者是指向结构体的指针,图文并茂,非常清楚)good

    总是有新入门的Windows程序员问我Windows的句柄到底是什么,我说你把它看做一种类似指针的标识就行了,但是显然这一答案不能让他们满意,然后我说去问问度娘吧,他们说不行网上的说法太多还难以理解. ...

  2. Dependency Injection 筆記 (4)

    续上集未完的相关设计模式... (本文摘自電子書:<.NET 依賴注入> Composite 模式 延续先前的电器比喻.现在,如果希望 UPS 不只接计算机,还要接电风扇.除湿机,可是 U ...

  3. 自动获取淘宝API数据访问的SessionKey

    最近在忙与淘宝做对接的工作,总体感觉淘宝的api文档做的还不错,不仅有沙箱测试环境,而且对于每一个api都可以通过api测试工具生成想要的代码,你完全可以先在测试工具中测试之后再进行代码的编写,这样就 ...

  4. Tido 习题-二叉树-最高分

    题目描述 老师想知道从某某同学到某某同学当中,分数最高的是多少.现在请你编程模拟老师的询问.当然,老师有时候需要更新某位同学的成绩. 输入 输入包含多组测试数据.每组输入第一行是两个正整数N和M(0& ...

  5. kubernetes实战篇之为默认账户创建镜像拉取密钥

    系列目录 上一节我们分别使用纯文本账户密码和docker的config文件一创建一个kubernetes secret对象,并且把它添加到containers的imagePullSecrets字段用以 ...

  6. spring 5.x 系列第22篇 —— spring 定时任务 (代码配置方式)

    源码Gitub地址:https://github.com/heibaiying/spring-samples-for-all 一.说明 1.1 项目结构说明 关于任务的调度配置定义在ServletCo ...

  7. Logback详细整理,基于springboot的日志配置

    Logback的配置介绍: 1.Logger.appender及layout Logger作为日志的记录器,把它关联到应用的对应的context上后,主要用于存放日志对象,也可以定义日志类型.级别. ...

  8. 【算法•日更•第六期】头脑风暴:洛谷P1528 切蛋糕题解

    ▎(一个没有用处的)前言 为什么这次题解特意写明题号呢?因为我发现了这样的事情: 所以不要混了,想看P1714题解的同志们可以圆润的滚开了. 好了,不说没用的了,切入正题: ▎题目 题目及测评链接:戳 ...

  9. 【朝花夕拾】Android自定义View篇之(九)多点触控(下)实践出真知

    前言 在上一篇文章中,已经总结了MotionEvent以及多点触控相关的基础理论知识和常用的函数.本篇将通过实现单指拖动图片,多指拖动图片的实际案例来进行练习并实现一些效果,来理解前面的理论知识.要理 ...

  10. 利用MAT分析JVM内存问题,从入门到精通(二)

    上一篇文章MAT入门到精通(一)介绍了MAT的使用场景和基本概念,这篇文章开始介绍MAT的基本功能,后面还有两篇,一篇是MAT的高级功能,另一篇是MAT实战案例分析. 三.欢迎页 使用MAT打开一个h ...