也许更好的阅读体验

\(Burnside引理\)

  • 公式
    \(\begin{aligned}L=\frac{1}{|G|}\sum_{i=1}^{|G|}D_{G_i}\end{aligned}\)
  • 一些定义
    \(E_i\) 表示与\(i\)同类的方案
    \(Z_i\) 表示使\(i\)不变的置换
    \(G\) 表示所有的置换方法
    \(D_i\) 表示第\(i\)种置换能使多少方案不变
    \(n\) 表示方案总数
    \(L\) 表示本质不同的方案数
  • 引理的引理
    \(|E_i|*|Z_i|=|G|\) \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个我不会证明
    \(\begin{aligned}n=\sum_{i=1}^{L}{|E_i|}\end{aligned}\)\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个就是按照定义,注意的是\(E_i\)表示的是本质不同的第\(i\)种方案
    \(\begin{aligned}\sum_{i=1}^n|Z_i|=\sum_{i=1}^{|G|}D_{G_i}\end{aligned}\)\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个也是按照定义,就是换了个计算方法,计算的是同样的东西

  • Burnside引理
    \(\begin{aligned}\sum_{j=1}^n|Z_j|=\sum_{i=1}^L\sum_{j \in E_i}|Z_j|=\sum_{i=1}^L|E_i|·|Z_i|=L·|G| \end{aligned}\)
    \(\begin{aligned}\therefore L·|G|=\sum_{j=1}^{|G|}D_{G_i} \end{aligned}\)
    \(\begin{aligned}\therefore L=\frac{1}{|G|}\sum_{i=1}^{|G|}D_{G_i} \end{aligned}\)

\(Polya定理\)

  • 公式
    \(\begin{aligned}L=\frac{1}{|G|}\sum_{i=1}^{|G|}m^{C_{G_i}}\end{aligned}\)
    其中\(m\)为颜色个数,\(C_i\)为第\(i\)种置换有多少个循环

\(一个置换的循环个数\)

一个项链有\(n\)个珠子,用\(k\)种颜色涂染会形成多少种不同的项链
两条可通过旋转得到的项链为相同项链

有\(n\)种置换方式\((\)每次旋转\(0,1,2...n\)个珠子\()\)
对于一次旋转\(i\)个珠子的方式,有\(gcd(i,n)\)个循环
证明
每个循环有的珠子的个数因是一样的
假设从\(x\)号珠子开始置换,循环结束时一定回到\(x\)号珠子 如\(x->(x+i-1)\%n+1->(x+2i-1)\%n+1->x\)
假设循环有\(p\)个珠子,那么循环\(p\)次就回到原来的珠子,此时转过\(i\)和\(n\)的最小公倍数个珠子
\(p·i=i·n/gcd(i,n) \ \ \ k\in Z\)
\(\therefore p=n/gcd(i,n)\)
每个循环有\(p\)个珠子那么就有\(n/p=gcd(i,n)\)个循环

Polya定理与Burnside引理的更多相关文章

  1. 等价类计数问题(Polya定理和burnside引理)

    零.约定: (置换等名词会在前置知识中有解释) \(1.\)在本文中,题目要求的染色方案等统称为"元素". \(2.\)两个元素严格相等我们记做"\(=\)", ...

  2. Burnside引理与Polya定理 学习笔记

    原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序 ...

  3. 【群论】polya定理

    对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...

  4. Polya定理

    http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置 ...

  5. [BZOJ1004] [HNOI2008] Cards (Polya定理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  6. Burnside引理与polay定理

    #Burnside引理与polay定理 引入概念 1.置换 简单来说就是最元素进行重排列 是所有元素的异议映射,即\([1,n]\)映射到\([1,n]\) \[ \begin{pmatrix} 1& ...

  7. 「算法笔记」Polya 定理

    一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...

  8. Burnside引理与Polya定理

    感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运 ...

  9. 等价类计数(Polya定理/Burnside引理)学习笔记

    参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交 ...

随机推荐

  1. Delphi皮肤之 - 图片按钮

    效果如图,支持普通.移上去.按下.弹起.禁用5种状态. unit BmpBtn; interface uses Windows, Messages, SysUtils, Classes, Graphi ...

  2. MongoDB数据库和集合的基本操作

    非关系型数据库 命令区分大小写:命令结束符为回车(与MySQL不同之处) mongodb配置 sudo service mongodb start mongo mongodb基本概念 集合对应于关系型 ...

  3. QT5 屏幕旋转90度

    主要思路是将所有项目界面加载到QGraphicsScene,再进行旋转操作.直接上代码#include <QApplication>#include <QGraphicsView&g ...

  4. 程序跳过UAC研究及实现思路(两种方法,现在可能都不行了)

    网上很对跳过UAC资料都是说如果让UAC弹出窗体,并没有真正跳过弹窗,这里结合动态提权+计划任务实现真正意义上的跳过UAC弹窗,运行程序的时候可以不出现UAC窗体,并且程序还是以高权限运行. vist ...

  5. 一条命令,秒秒钟完成MD5、SHA1校验,这就叫效率!

    相信很多奋斗在运维战线的小伙伴们经常会遇到版本升级之类的问题.笔者之前所在的公司每次进行版本发布的时候都会附带MD5校验哈希值,每次升级之前一般都要核对MD5哈希值的,刚刚开始的时候对Linux并不是 ...

  6. client,offset,scroll系列

    client(客户端),offset(偏移),scroll(滚动)1.client系列 clientTop 内容区域到边框顶部的距离 ,说白了,就是边框的高度 clientLeft 内容区域到边框左部 ...

  7. 八大排序算法 JAVA实现 亲自测试 可用!

    今天很高兴 终于系统的实现了八大排序算法!不说了 直接上代码 !代码都是自己敲的, 亲测可用没有问题! 另:说一下什么是八大排序算法: 插入排序 希尔排序 选择排序 堆排序 冒泡排序 快速排序 归并排 ...

  8. 使用 Python 识别并提取图像中的文字

    1. 介绍 介绍使用 python 进行图像的文字识别,将图像中的文字提取出来,可以帮助我们完成很多有趣的事情. 2. 必备工具 tesseract-ocr 下载地址: https://github. ...

  9. Application生命周期(一)

    1.Application是什么? Application和Activity,Service一样,是android框架的一个系统组件,当android程序启动时系统会创建一个 application对 ...

  10. 阿里云ssl证书NGINX配置https,wss

    server { listen 443; server_name server.sentiger.com; ssl on; root /home/wwwroot/Service/beta/public ...