1 Clone Graph   1  copy ervery nodes by bfs  2  add neighbors

    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node)
{
if (node == null) {
return node;
} List<UndirectedGraphNode> nodes = new ArrayList<>();
Map<UndirectedGraphNode, UndirectedGraphNode> map = new HashMap<>();
nodes.add(node);
map.put(node, new UndirectedGraphNode(node.label)); int start = ;
while (start < nodes.size()) {
UndirectedGraphNode head = nodes.get(start++);
for (int i = ; i < head.neighbors.size(); i++) {
UndirectedGraphNode neighbor = head.neighbors.get(i);
if (!map.containsKey(neighbor)) {
nodes.add(neighbor);
map.put(neighbor, new UndirectedGraphNode(neighbor.label));
}
}
} for (int i = ; i < nodes.size(); i++) {
UndirectedGraphNode newNode = map.get(nodes.get(i));
for (int j = ; j < nodes.get(i).neighbors.size(); j++) {
newNode.neighbors.add(map.get(nodes.get(i).neighbors.get(j)));
}
} return map.get(node);
}

2 Topological Sorting   1 store nodes and rudu  2 find nodes has 0 rudu  3 bfs

    public ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph) {
// write your code here
ArrayList<DirectedGraphNode> result = new ArrayList<>();
Map<DirectedGraphNode, Integer> map = new HashMap<>(); for (DirectedGraphNode node : graph) {
for (DirectedGraphNode neighbor : node.neighbors) {
if (map.containsKey(neighbor)) {
map.put(neighbor, map.get(neighbor) + );
} else {
map.put(neighbor, );
}
}
} for (DirectedGraphNode node : graph) {
if (!map.containsKey(node)) {
result.add(node);
}
} int start = ;
while (start < result.size()) {
DirectedGraphNode node = result.get(start++);
for (DirectedGraphNode neighbor : node.neighbors) {
map.put(neighbor, map.get(neighbor) - );
if (map.get(neighbor) == ) {
result.add(neighbor);
}
}
} return result;
}

3 Route Between Two Nodes in Graph   bfs   1  hold visited  and queue  2 bfs

    public boolean hasRoute(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t) {
if (s == t) {
return true;
} Queue<DirectedGraphNode> queue = new LinkedList<>();
Set<DirectedGraphNode> visited = new HashSet<>();
queue.add(s);
visited.add(s); while (!queue.isEmpty()){
DirectedGraphNode node = queue.poll();
for (DirectedGraphNode neighbor : node.neighbors) {
if (visited.contains(neighbor)) {
continue;
}
queue.add(neighbor);
visited.add(neighbor);
if (neighbor == t) {
return true;
}
}
} return false;
}

4 N-Queens

    public ArrayList<ArrayList<String>> solveNQueens(int n)
{
// write your code here
ArrayList<ArrayList<String>> res = new ArrayList<>();
search(res, new ArrayList<Integer>(), n);
return res;
}
void search(ArrayList<ArrayList<String>> res, ArrayList<Integer> cols, int n) {
if (cols.size() == n) {
res.add(drawChessboard(cols));
return;
} for (int i = ; i < n; i++) {
if (!isValid(cols, i)) {
continue;
}
cols.add(i);
search(res, cols, n);
cols.remove(cols.size() - );
}
} ArrayList<String> drawChessboard(List<Integer> cols) {
ArrayList<String> result = new ArrayList<>();
for (int i = ; i < cols.size(); i++) {
StringBuilder sb = new StringBuilder();
for (int j = ; j < cols.size(); j++) {
sb.append(cols.get(i) == j ? "Q" : ".");
}
result.add(sb.toString());
}
return result;
} boolean isValid(List<Integer> cols, int colIndex) {
int row = cols.size();
for (int i = ; i < cols.size(); i++) {
if (cols.get(i) == colIndex) {
return false;
} if (i + cols.get(i) == row + colIndex) {
return false;
} if (i - cols.get(i) == row - colIndex) {
return false;
}
}
return true;
}

5 Word Ladder

   public int ladderLength(String start, String end, Set<String> dict)
{
if (dict == null) {
return ;
} if (start.equals(end)) {
return ;
} dict.add(end);
Set<String> visited = new HashSet<>();
Queue<String> queue = new LinkedList<>();
queue.add(start);
int length = ; while (!queue.isEmpty()) {
length++;
int size = queue.size();
for (int i = ; i < size; i++) {
String word = queue.poll();
for (String newWord: getNextWords(word, dict)) {
if (visited.contains(newWord)) {
continue;
} if (newWord.equals(end)) {
return length;
} visited.add(newWord);
queue.add(newWord);
}
}
}
return ;
} List<String> getNextWords(String word, Set<String> dict) {
List<String> result = new ArrayList<>();
for (char c = 'a'; c <= 'z'; c++) {
for (int i = ; i < word.length(); i++) {
if (c == word.charAt(i)) {
continue;
}
String newWord = replace(word, i, c);
if (dict.contains(newWord)) {
result.add(newWord);
}
}
}
return result;
} String replace(String word, int i, char c) {
char[] arr = word.toCharArray();
arr[i] = c;
return new String(arr);
}

6 Word Ladder

public class Solution {
/**
* @param start, a string
* @param end, a string
* @param dict, a set of string
* @return a list of lists of string
*/
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
List<List<String>> result = new ArrayList<>();
Map<String, Integer> distance = new HashMap<>();
Map<String, List<String>> map = new HashMap<>(); dict.add(start);
dict.add(end); bfs(start, end, dict, distance, map); List<String> path = new ArrayList<>(); dfs(start, end, result, distance, map, path); return result;
} void dfs(String start, String cur, List<List<String>> result, Map<String, Integer> distance,
Map<String, List<String>> map, List<String> path) {
path.add(cur);
if (cur.equals(start)) {
Collections.reverse(path);
result.add(new ArrayList<>(path));
Collections.reverse(path);
} else {
for (String word : map.get(cur)) {
if (distance.containsKey(word) && distance.get(word) + == distance.get(cur)) {
dfs(start, word, result, distance, map, path);
}
}
}
path.remove(path.size() - );
} void bfs(String start, String end, Set<String> dict, Map<String, Integer> distance,
Map<String, List<String>> map) { Queue<String> queue = new LinkedList<>();
queue.offer(start);
distance.put(start, ); for(String word : dict) {
map.put(word, new ArrayList<String>());
} while (!queue.isEmpty()) {
String word = queue.poll();
for (String newWord: getNextWords(word, dict)) {
map.get(newWord).add(word);
if (!distance.containsKey(newWord)) {
distance.put(newWord, distance.get(word) + );
queue.offer(newWord);
}
}
}
} List<String> getNextWords(String word, Set<String> dict) {
List<String> result = new ArrayList<>();
for (char c = 'a'; c <= 'z'; c++) {
for (int i = ; i < word.length(); i++) {
if (c == word.charAt(i)) {
continue;
}
String newWord = replace(word, i, c);
if (dict.contains(newWord)) {
result.add(newWord);
}
}
}
return result;
} String replace(String word, int i, char c) {
char[] arr = word.toCharArray();
arr[i] = c;
return new String(arr);
}
}

7 Palindrome Partitioning

     public ArrayList<ArrayList<String>> partition(String s) {
ArrayList<ArrayList<String>> res = new ArrayList<>();
ArrayList<String> path = new ArrayList<>();
dfs(s, , path, res);
return res;
}
void dfs(String s, int start, ArrayList<String> path, ArrayList<ArrayList<String>> res) {
if (start == s.length()) {
res.add(new ArrayList<>(path));
return;
}
for (int i = start; i < s.length(); i++) {
if (isValid(s, start, i)){
path.add(s.substring(start, i + ));
dfs(s, i + , path, res);
path.remove(path.size() - );
}
}
}
boolean isValid(String s, int left, int right) {
while (left < right) {
if (s.charAt(left++) != s.charAt(right--)) {
return false;
}
}
return true;
}

BFS vs DFS的更多相关文章

  1. HDU-4607 Park Visit bfs | DP | dfs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 首先考虑找一条最长链长度k,如果m<=k+1,那么答案就是m.如果m>k+1,那么最 ...

  2. BFS和DFS详解

    BFS和DFS详解以及java实现 前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问 ...

  3. 算法录 之 BFS和DFS

    说一下BFS和DFS,这是个比较重要的概念,是很多很多算法的基础. 不过在说这个之前需要先说一下图和树,当然这里的图不是自拍的图片了,树也不是能结苹果的树了.这里要说的是图论和数学里面的概念. 以上概 ...

  4. hdu--1026--Ignatius and the Princess I(bfs搜索+dfs(打印路径))

    Ignatius and the Princess I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  5. 算法学习之BFS、DFS入门

    算法学习之BFS.DFS入门 0x1 问题描述 迷宫的最短路径 给定一个大小为N*M的迷宫.迷宫由通道和墙壁组成,每一步可以向相邻的上下左右四格的通道移动.请求出从起点到终点所需的最小步数.如果不能到 ...

  6. 【数据结构与算法】自己动手实现图的BFS和DFS(附完整源码)

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/19617187 图的存储结构 本文的重点在于图的深度优先搜索(DFS)和广度优先搜索(BFS ...

  7. ACM__搜素之BFS与DFS

    BFS(Breadth_First_Search) DFS(Depth_First_Search) 拿图来说 BFS过程,以1为根节点,1与2,3相连,找到了2,3,继续搜2,2与4,相连,找到了4, ...

  8. BFS和DFS算法

    昨晚刚昨晚华为笔试题,用到了BFS和DFS,可惜自己学艺不精,忘记了实现原理,现在借用大佬写的内容给自己做个提高 转自:https://www.jianshu.com/p/70952b51f0c8 图 ...

  9. 通俗理解BFS和DFS,附基本模板

    1.BFS(宽度优先搜索):使用队列来保存未被检测的节点,按照宽度优先的顺序被访问和进出队列 打个比方:(1)类似于树的按层次遍历 (2)你的眼镜掉在了地上,你趴在地上,你总是先摸离你最近的地方,如果 ...

  10. [Algorithms] Graph Traversal (BFS and DFS)

    Graph is an important data structure and has many important applications. Moreover, grach traversal ...

随机推荐

  1. .Net for Spark 实现 WordCount 应用及调试入坑详解

    .Net for Spark 实现WordCount应用及调试入坑详解 1.    概述 iNeuOS云端操作系统现在具备物联网.视图业务建模.机器学习的功能,但是缺少一个计算平台产品.最近在调研使用 ...

  2. 全网唯一的纯前端实现的canvas支持多图压缩并打包下载的工具

    技术栈: canvas jszip.js(网页端压缩解压缩插件JSZIP库) FileSaver.js(文件保存到本地库) 直接解读源码: <div class="cont" ...

  3. 基于uReplicator复制的kafka主备集群间的切换策略

    一.概述 目前基于中间件uReplicator实现了kafka集群间的迁移复制,可以实现跨区.跨云的kafka集群间复制同步,也可以实现kafka集群的冷热互备架构:在实现集群间同步以后,需要解决一个 ...

  4. 如何为linux服务器配置DNS解析?

    本文建立在已经搭建好DNS服务器时,为linux机器配置DNS服务器的三种方式. IP地址是网络上标识站点的数字地址,为了方便记忆,采用域名来代替IP地址标识站点地址.DNS(域名解析)就是域名到IP ...

  5. 简单DI

    <?php class DI { private $container; public function set($key, $obj, ...$args) { $this->contai ...

  6. paxos算法——今生

    Paxos 定义2.1  票:即弱化形式的锁.它具备下面几个性质: 可重新发布:服务器可以重新发布新票,即使前面发布的票没有释放. 票可以过期:客户端用一张票来给服务器发送命令请求时,只有当这张票是最 ...

  7. Python操作ElasticSearch

    Python批量向ElasticSearch插入数据 Python 2的多进程不能序列化类方法, 所以改为函数的形式. 直接上代码: #!/usr/bin/python # -*- coding:ut ...

  8. UVALive 6255:Kingdoms(状压DFS)

    题目链接 题意 给出n个王国和n*n的矩阵,mp[i][j] 代表第 i 个王国欠第 j 个王国 mp[i][j] 块钱.如果当前的王国处于负债状态,那么这个王国就会被消除,和它相连的王国的债务都会被 ...

  9. Git使用小技巧之Stash命令藏储零乱分支

     想要获取更多文章可以访问我的博客 - 代码无止境. 在开发的过程中可能会经常出现下面这种情况,我们正在开发某个功能,当前分支的内容比较乱,不太适合提交,而此时我们需要切换到其他分支上处理一些事情.这 ...

  10. django基础知识之GET属性:

    GET属性 QueryDict类型的对象 包含get请求方式的所有参数 与url请求地址中的参数对应,位于?后面 参数的格式是键值对,如key1=value1 多个参数之间,使用&连接,如ke ...