发表在2017年CVPR。

摘要

在图像检测任务中,对于图像不同的区域,我们可以分配不同层数的网络予以处理。

本文就提出了一个基于ResNet的层数可调网络,可以端到端训练、确定的(deterministic)并且是问题不可知的(problem-agnostic),即可用于其他计算机视觉任务。

作者发现,该网络不仅能提高ResNet计算效率,而且其表现也与人类的注意力机制相符,如图1。

故事

  • DCNN被广泛应用于各种计算机视觉问题,并且逐渐成为SOTA方法必不可少的组分 =>

  • 然而,DCNN最大的问题在于其计算负担重 =>

  • 一种自然的方法是像人类一样,采取注意力机制 =>

  • 例如,glimpse-based注意力模型只处理少数重点区域。显然这种方法不适用于图像转换问题或逐像素预测问题,如分割。并且,预测重点区域需要额外的子网络或启发过程[1] =>

  • 除此之外,我们还可以采取空域软注意力模型。但它们压根不会节省计算量,反而可能增加计算量(计算权值) =>

  • 为此,我们采用最近用于RNN的ACT(Adaptive Computation Time)[12]机制。我们将展示:ACT可以动态决策ResNet的层数 =>

  • 进一步,我们提出空域自适应的计算时间算法SACT,可以根据空域计算量完成ACT。在COCO上的实验证明:SACT超过了ACT和非适应算法。

SACT机制

SACT是一个可以端到端训练的结构。其将注意力机制融入ResNet。

它学习的是一种确定性的决策模式:若特征变得足够好,那么某个空域位置上的计算就将停止。

由于SACT会在图像和特征图之间保持对齐(maintains the alighment),因此SACT适用于逐像素预测任务。

ACT机制

ResNet由多个Residual block组成,而每一个block内有多个residual unit。每一个unit就是一个\(F(x) = x + f(x)\)函数,其中后者是一个3层卷积:首先是1x1卷积降通道数,然后3x3卷积通道尺寸不变,最后是1x1卷积还原通道数。

为了实现ACT,作者在每个unit的输出端都加入一个分支,预测停止得分(halting score):一个在0、1之间的标量。如图3,该得分会在一个block内累积。当累积至1时,推导就停止,后面的unit都会被跳过。

并且,根据这个得分,我们还可以计算剩余得分R,以及最终的停留成本ponder cost(见2.1节)。最终的输出也是前面特征的加权求和,权值就是各unit得分。

为什么要这么设计呢?因为我们通过惩罚这个停留成本,可以让网络尽早停止(ponder cost惩罚经过的unit数量),同时又能得到可靠的输出(最终输出是各unit的加权求和)。

该ponder cost会被加权,然后计入总损失函数。

注意,每个block内都会单独执行一次ACT。

具体而言,该停止得分是通过一个简单的线性方程得到的。其先对输入平均池化,然后输入线性方程,经sigmoid输出。

SACT机制

上面的ACT机制,是对每一个unit设计了一个停止得分,然后不断累加。在这里,SACT就是对空域特征设计了停止得分,如图4。

如果某个位置被停止,那么其将直接复制(相当于设置残差为0),从而继续完成下一次卷积。

实验

看图很有意思。停留成本高,说明该区域需要经过较长推理,很难节省计算量。

Paper | Spatially Adaptive Computation Time for Residual Networks的更多相关文章

  1. Paper | Adaptive Computation Time for Recurrent Neural Networks

    目录 1. 网络资源 2. 简介 3. 自适应运算时间 3.1 有限运算时间 3.2 误差梯度 1. 网络资源 这篇文章的写作太随意了,读起来不是很好懂(掺杂了过多的技术细节).因此有作者介绍会更好. ...

  2. Residual Networks <2015 ICCV, ImageNet 图像分类Top1>

    本文介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks.实际上,MSRA是今年Imagenet的大赢家,不单在分类任务,MSRA还用resid ...

  3. Residual Networks &lt;2015 ICCV, ImageNet 图像分类Top1&gt;

    本文介绍一下2015 ImageNet中分类任务的冠军--MSRA何凯明团队的Residual Networks.实际上.MSRA是今年Imagenet的大赢家.不单在分类任务,MSRA还用resid ...

  4. 解析Wide Residual Networks

    Wide Residual Networks (WRNs)是2016年被提出的基于扩展通道数学习机制的卷积神经网络.对深度卷积神经网络有了解的应该知道随着网络越深性能越好,但是训练深度卷积神经网络存在 ...

  5. 深度残差网(deep residual networks)的训练过程

    这里介绍一种深度残差网(deep residual networks)的训练过程: 1.通过下面的地址下载基于python的训练代码: https://github.com/dnlcrl/deep-r ...

  6. 残差网络(Residual Networks, ResNets)

    1. 什么是残差(residual)? “残差在数理统计中是指实际观察值与估计值(拟合值)之间的差.”“如果回归模型正确的话, 我们可以将残差看作误差的观测值.” 更准确地,假设我们想要找一个 $x$ ...

  7. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) ——3.Programming assignments : Residual Networks

    Residual Networks Welcome to the second assignment of this week! You will learn how to build very de ...

  8. Residual Networks

    Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...

  9. 深度学习论文笔记:Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes

    这篇文章将深度学习算法应用于机械故障诊断,采用了“小波包分解+深度残差网络(ResNet)”的思路,将机械振动信号按照故障类型进行分类. 文章的核心创新点:复杂旋转机械系统的振动信号包含着很多不同频率 ...

随机推荐

  1. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学

    F2. Wrong Answer on test 233 (Hard Version) Your program fails again. This time it gets "Wrong ...

  2. yii2自定义验证规则

  3. PHP 7.4.0 发布

    近日,PHP 7.4.0 发布了,此版本标志着 PHP 7 系列的第四次特性更新. PHP 7.4.0 进行了许多改进,并带来了一些新特性,包括: Typed Properties  类型属性 类属性 ...

  4. 实验:用Unity抓取指定url网页中的所有图片并下载保存

    突发奇想,觉得有时保存网页上的资源非常麻烦,有没有办法输入一个网址就批量抓取对应资源的办法呢. 需要思考的问题: 1.如何得到网页url的html源码呢? 2.如何在浩瀚如海的html中匹配出需要的资 ...

  5. 一次业务网关用ASP.NET Core 2.1重构的小结

    目录 前言 统一鉴权 服务限流 路由转发 参数重组 链路跟踪 熔断降级 服务计次 业务指标监控 日志记录 迭代更新 总结 前言 对于API网关,业界貌似对它进行下划分,有下面几个分类/场景. 面向We ...

  6. Laravel配置全局公共函数

    在Laravel项目中我们常常需要定义一些全局的公共函数,通常我们会将这些公共函数定义在一个单独的文件里,如helpers.php中.我们在app目录下创建一个名为helpers.php的文件(app ...

  7. idea创建maven的web项目

    前言 今天搭xfire的时候,我想对xfire进行一下测试,就想弄个web工程试试,发现网上写的很多没有用的,就自己写了一下.十分精简.也介绍了如何解决maven骨架建立项目非常慢的问题. 介绍 1. ...

  8. WEB-INF文件夹作用

    WEB-INF是Java的WEB应用的安全目录,客户端无法访问,只能通过服务端访问,从而实现了代码的安全.在WEB-INF中主要是系统运行的配置信息和环境 主要有classes.config.lib文 ...

  9. Python 容器使用的 5 个技巧和 2 个误区

    "容器"这两个字很少被 Python 技术文章提起.一看到"容器",大家想到的多是那头蓝色小鲸鱼:Docker,但这篇文章和它没有任何关系.本文里的容器,是 P ...

  10. 致Python初学者的六点建议

    Python是最容易学习的编程语言之一,其语法近似英语.通常,初学者只会遇到一些小麻烦,如强制缩进.在函数中使用self等. 然而,当开始阅读.复制和编辑他人代码时,麻烦就接踵而至了. 这里,我将解释 ...