题意

给你一个1~n的排列,由两种操作:

1 pos:将a[pos]+10 000 000

2 r k:求大于等于k且不等于a[1~r]的数的最小值。

强制在线。

思路

如果没有1操作,那么我们直接主席树就OK了。

考虑不真正的进行修改,每次1操作就把a[pos]插进set,因为加10 000 000后肯定是大于n的,而k是小于等于n的,所以set里的数是可以用的。要和1r的数都不相同,那么我们用主席树查找区间r+1n+1的大于等于k的最小值即可,为什么是n+1呢,因为k<=n,如果k==n,那么满足条件且最小的数必定是n+1了。修改后的数的值变大了,而k<=n,显然这个修改后的值是对答案无影响的,但原来的值仍然是可以利用的,所以我们可以在set里二分查找第一个大于等于k的数,然后和主席树查到的取个最小值即可。

至于主席树查询的技巧:要剪枝,当sum[v]-sum[u]<=0时,表示这个区间不存在大于等于k的数,直接return inf;先判断是否k<=mid,才能往区间左边走,如果找到满足条件的数了我们就不必再往区间右边找了,因为右边的数肯定比左边大,相当于减了一半的时间。

代码

#include<bits/stdc++.h>
#define mid (l+r)/2
using namespace std; const int N = 1e5+5;
int n, q, sz, num = 0;
int a[N], b[N], T[N];
int sum[N<<5], L[N<<5], R[N<<5],mi[N<<5];
#define inf 0x3f3f3f3f
inline int build(int l, int r)
{
int rt = ++ num;
sum[rt] = 0;
if (l < r)
{
L[rt] = build(l, mid);
R[rt] = build(mid+1, r);
}
return rt;
} inline int update(int pre, int l, int r, int x)
{
int rt = ++ num;
L[rt] = L[pre];
R[rt] = R[pre];
sum[rt] = sum[pre]+1;
if (l < r)
{
if (x <= mid) L[rt] = update(L[pre], l, mid, x);
else R[rt] = update(R[pre], mid+1, r, x);
}
return rt;
} inline int query(int u, int v, int l, int r, int k)
{
if(sum[v]-sum[u]<=0)
return inf;
if(l==r)
return l;
int ans=inf;
if(k<=mid)
ans=min(ans,query(L[u], L[v], l, mid, k));
if(ans==inf)
ans=min(ans,query(R[u], R[v], mid+1, r, k));
// cout<<ans<<endl;
return ans;
}
set<int> s;
int main()
{
int TT;
scanf("%d",&TT);
while(TT--)
{
s.clear();
scanf("%d%d", &n, &q);
num=0;
T[0] = build(1, n+1);
for (int i = 1; i <= n; i ++)
{
scanf("%d", &a[i]);
T[i] = update(T[i-1], 1, n+1, a[i]);
}
T[n+1]=update(T[n],1,n+1,n+1);
int ans=0;
while (q --)
{
int o,x,y;
scanf("%d", &o);
if(o==1)
{
scanf("%d",&x);
x^=ans;
s.insert(a[x]);
// ans=0;
}
else
{
scanf("%d%d",&x,&y);
x^=ans,y^=ans;
// cout<<x<<" "<<y<<endl;
set<int>::iterator it=s.lower_bound(y);
int t=inf;
if(it!=s.end())
t=*it;
// cout<<"t"<<t<<endl;
ans=min(query(T[x],T[n+1],1,n+1,y),t);
printf("%d\n",ans);
}
} }
return 0;
}

2019CCPC网络选拔赛 hdu6703 array(主席树+set)的更多相关文章

  1. 2019ccpc网络赛hdu6703 array(线段树)

    array 题目传送门 解题思路 操作1是把第pos个位置上的数加上\(10^7\),操作2是找到区间[1,r]中没有且大于k的最小的数.注意到k的范围是小于等于n的,且n的范围是\(10^5\),远 ...

  2. hdoj6703 2019 CCPC网络选拔赛 1002 array

    题意 description You are given an array a1,a2,...,an(∀i∈[1,n],1≤ai≤n). Initially, each element of the ...

  3. hdu6704 2019CCPC网络选拔赛1003 K-th occurrence 后缀数组

    题意:给你一个长度为n的字符串,有q个询问,每次询问一个子串s(l,r)第k次出现的位置,若子串出现次数少于k次输出-1. 解题思路:先把SA跑出来,然后对于每次询问可以由l和rank[]找到l在所有 ...

  4. hdu6704 2019CCPC网络选拔赛1003 K-th occurrence 后缀自动机+线段树合并

    解题思路: fail树上用权值线段树合并求right/endpos集合,再用倍增找到待查询串对应节点,然后权值线段树求第k大. #include<bits/stdc++.h> using ...

  5. HDU6703 array (线段树)

    题意:长为1e5的全排列 有两个操作 把一个数删掉 询问1,r这个区间内 找到一个数大于等于x 且这个数不等于区间内的所有数 题解:建一颗权值线段树 线段树里存值为i的数在原数组中的坐标 维护坐标的最 ...

  6. hdu6075 2019CCPC网络选拔赛1004 path

    题意:给定一个带权有向图,有q组询问,每次询问在有向图的所有路径中,第k小的路径权值 解题思路:因为k最大只有5e4,考虑暴力搜索出前maxk小的路径并用数组记录权值,然后就可以O(1)查询. 具体实 ...

  7. [2019CCPC网络赛][hdu6704]K-th occurrence(后缀数组&&主席树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6704 题意为查询子串s[l...r]第k次出现的位置. 写完博客后5分钟的更新 写完博客才发现这份代码 ...

  8. 2019CCPC网络赛 C - K-th occurrence HDU - 6704(后缀数组+ST表+二分+主席树)

    题意 求区间l,r的子串在原串中第k次出现的位置. 链接:https://vjudge.net/contest/322094#problem/C 思路 比赛的时候用后缀自动机写的,TLE到比赛结束. ...

  9. HDU 6447 - YJJ's Salesman - [树状数组优化DP][2018CCPC网络选拔赛第10题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6447 Problem DescriptionYJJ is a salesman who has tra ...

随机推荐

  1. Linux shell--基础指令

    Linux shell--基础指令 浏览Linux文件系统 Linux中最基础也是最必要的一条指令 cd destination cd命令可接受单个参数destination,用以指定想切换到的目录名 ...

  2. ABP入门教程7 - 基础设施层更新数据库

    点这里进入ABP入门教程目录 设置数据库 在基础设施层(即JD.CRS.EntityFrameworkCore)打开数据库环境设置 JD.CRS.EntityFrameworkCore/EntityF ...

  3. STL--标准模板库--简要概述

    STL--标准模板库 #include <vector>     //头文件 STL(Standared Template Library)即标准模板库,惠普实验室开发的一系列软件的统称. ...

  4. LeetCode刷题191118

    博主渣渣一枚,刷刷leetcode给自己瞅瞅,大神们由更好方法还望不吝赐教.题目及解法来自于力扣(LeetCode),传送门. 算法: 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按 ...

  5. IDEA使用svn拉取多模块项目

    如果没有安装过svn客户端,安装的时候需要选择安装第二个工具,如下图所示 安装小乌龟, 自行搜索, 注意点是需要选择安装第二个工具 因为默认是不安装的, 而这个组件是集成到IDEA ”必须的” . 如 ...

  6. Tornado(1)

    概述 Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过为了 ...

  7. 2019 SDN上机第5次作业

    2019 SDN上机第5次作业 1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于: 描述官方教程实现了一个什么样的交换机功能? 答:官方教程实现了一 ...

  8. Make Them Odd

    time limit per test3 secondsmemory limit per test256 megabytesinput: standard inputoutput: standard ...

  9. linux 判断文件夹或文件是否存在

    文件夹不存在则创建 if [ ! -d "/data/" ];then mkdir /data else echo "文件夹已经存在" fi 文件存在则删除 i ...

  10. 【shell脚本语法】判断、流程控制语句

    目录 判断用户参数 流程控制语句 一.判断用户参数 1.1 文件判断参数 PS:$?代表上一个命令的返回值,为0表示正确执行,非0表示错误执行.详情可参考我另一篇博客:https://www.cnbl ...