STM32进阶之串口环形缓冲区实现
队列的概念
在此之前,我们来回顾一下队列的基本概念:
队列 (Queue):是一种先进先出(First In First Out ,简称 FIFO)的线性表,只允许在一端插入(入队),在另一端进行删除(出队)。

队列的特点
类似售票排队窗口,先到的人看到能先买到票,然后先走,后来的人只能后买到票

队列的常见两种形式

普通队列

在计算机中,每个信息都是存储在存储单元中的,比喻一下吧,上图的一些小正方形格子就是一个个存储单元,你可以理解为常见的数组,存放我们一个个的信息。
当有大量数据的时候,我们不能存储所有的数据,那么计算机处理数据的时候,只能先处理先来的,那么处理完后呢,就会把数据释放掉,再处理下一个。那么,已经处理的数据的内存就会被浪费掉。因为后来的数据只能往后排队,如过要将剩余的数据都往前移动一次,那么效率就会低下了,肯定不现实,所以,环形队列就出现了。
环形队列

它的队列就是一个环,它避免了普通队列的缺点,就是有点难理解而已,其实它就是一个队列,一样有队列头,队列尾,一样是先进先出(FIFO)。我们采用顺时针的方式来对队列进行排序。
队列头 (Head) : 允许进行删除的一端称为队首。
队列尾 (Tail) : 允许进行插入的一端称为队尾。
环形队列的实现:在计算机中,也是没有环形的内存的,只不过是我们将顺序的内存处理过,让某一段内存形成环形,使他们首尾相连,简单来说,这其实就是一个数组,只不过有两个指针,一个指向列队头,一个指向列队尾。指向列队头的指针(Head)是缓冲区可读的数据,指向列队尾的指针(Tail)是缓冲区可写的数据,通过移动这两个指针(Head) &(Tail)即可对缓冲区的数据进行读写操作了,直到缓冲区已满(头尾相接),将数据处理完,可以释放掉数据,又可以进行存储新的数据了。
实现的原理:初始化的时候,列队头与列队尾都指向0,当有数据存储的时候,数据存储在‘0’的地址空间,列队尾指向下一个可以存储数据的地方‘1’,再有数据来的时候,存储数据到地址‘1’,然后队列尾指向下一个地址‘2’。当数据要进行处理的时候,肯定是先处理‘0’空间的数据,也就是列队头的数据,处理完了数据,‘0’地址空间的数据进行释放掉,列队头指向下一个可以处理数据的地址‘1’。从而实现整个环形缓冲区的数据读写。

看图,队列头就是指向已经存储的数据,并且这个数据是待处理的。下一个CPU处理的数据就是1;而队列尾则指向可以进行写数据的地址。当1处理了,就会把1释放掉。并且把队列头指向2。当写入了一个数据6,那么队列尾的指针就会指向下一个可以写的地址。

从队列到串口缓冲区的实现
串口环形缓冲区收发:在很多入门级教程中,我们知道的串口收发都是:接收一个数据,触发中断,然后把数据发回来。这种处理方式是没有缓冲的,当数量太大的时候,亦或者当数据接收太快的时候,我们来不及处理已经收到的数据,那么,当再次收到数据的时候,就会将之前还未处理的数据覆盖掉。那么就会出现丢包的现象了,对我们的程序是一个致命的创伤。
那么如何避免这种情况的发生呢,很显然,上面说的一些队列的特性很容易帮我们实现我们需要的情况。将接受的数据缓存一下,让处理的速度有些许缓冲,使得处理的速度赶得上接收的速度,上面又已经分析了普通队列与环形队列的优劣了,那么我们肯定是用环形队列来进行实现了。下面就是代码的实现:
定义一个结构体:
typedef struct
{
u16 Head;
u16 Tail;
u16 Lenght;
u8 Ring_Buff[RINGBUFF_LEN];
}RingBuff_t;
RingBuff_t ringBuff;//创建一个ringBuff的缓冲区
初始化
初始化结构体相关信息:使得我们的环形缓冲区是头尾相连的,并且里面没有数据,也就是空的队列。
/**
* @brief RingBuff_Init
* @param void
* @return void
* @author 杰杰
* @date 2018
* @version v1.0
* @note 初始化环形缓冲区
*/
void RingBuff_Init(void)
{
//初始化相关信息
ringBuff.Head = 0;
ringBuff.Tail = 0;
ringBuff.Lenght = 0;
}
初始化效果如下:

写入环形缓冲区的代码实现:
/**
* @brief Write_RingBuff
* @param u8 data
* @return FLASE:环形缓冲区已满,写入失败;TRUE:写入成功
* @author 杰杰
* @date 2018
* @version v1.0
* @note 往环形缓冲区写入u8类型的数据
*/
u8 Write_RingBuff(u8 data)
{
if(ringBuff.Lenght >= RINGBUFF_LEN) //判断缓冲区是否已满
{
return FLASE;
}
ringBuff.Ring_Buff[ringBuff.Tail]=data;
// ringBuff.Tail++;
ringBuff.Tail = (ringBuff.Tail+1)%RINGBUFF_LEN;//防止越界非法访问
ringBuff.Lenght++;
return TRUE;
}
读取缓冲区的数据的代码实现:
/**
* @brief Read_RingBuff
* @param u8 *rData,用于保存读取的数据
* @return FLASE:环形缓冲区没有数据,读取失败;TRUE:读取成功
* @author 杰杰
* @date 2018
* @version v1.0
* @note 从环形缓冲区读取一个u8类型的数据
*/
u8 Read_RingBuff(u8 *rData)
{
if(ringBuff.Lenght == 0)//判断非空
{
return FLASE;
}
*rData = ringBuff.Ring_Buff[ringBuff.Head];//先进先出FIFO,从缓冲区头出
// ringBuff.Head++;
ringBuff.Head = (ringBuff.Head+1)%RINGBUFF_LEN;//防止越界非法访问
ringBuff.Lenght--;
return TRUE;
}
对于读写操作需要注意的地方有两个:
判断队列是否为空或者满,如果空的话,是不允许读取数据的,返回FLASE。如果是满的话,也是不允许写入数据的,避免将已有数据覆盖掉。那么如果处理的速度赶不上接收的速度,可以适当增大缓冲区的大小,用空间换取时间。
防止指针越界非法访问,程序有说明,需要使用者对整个缓冲区的大小进行把握。
那么在串口接收函数中:
void USART1_IRQHandler(void)
{
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断
{
USART_ClearITPendingBit(USART1,USART_IT_RXNE); //清楚标志位
Write_RingBuff(USART_ReceiveData(USART1)); //读取接收到的数据
}
}
测试效果

测试数据没有发生丢包现象
补充
对于现在的阶段,杰杰我本人写代码也慢慢学会规范了。所有的代码片段均使用了可读性很强的,还有可移植性也很强的。我使用了宏定义来决定是否开启环形缓冲区的方式来收发数据,移植到大家的代码并不会有其他副作用,只需要开启宏定义即可使用了。
#define USER_RINGBUFF 1 //使用环形缓冲区形式接收数据
#if USER_RINGBUFF
/**如果使用环形缓冲形式接收串口数据***/
#define RINGBUFF_LEN 200 //定义最大接收字节数 200
#define FLASE 1
#define TRUE 0
void RingBuff_Init(void);
u8 Write_RingBuff(u8 data);
u8 Read_RingBuff(u8 *rData);
#endif
当然,我们完全可以用空闲中断与DMA传输,效率更高,但是某些单片机没有空闲中断与DMA,那么这种环形缓冲区的作用就很大了,并且移植简便。
说明:文章部分截图来源慕课网james_yuan老师的课程
喜欢就关注我吧!

相关代码可以在公众号后台获取。
更多资料欢迎关注“物联网IoT开发”公众号!
STM32进阶之串口环形缓冲区实现的更多相关文章
- STM32进阶之串口环形缓冲区实现(转载)
转载自微信公众号“玩转单片机”,感谢原作者“杰杰”. 队列的概念 在此之前,我们来回顾一下队列的基本概念:队列 (Queue):是一种先进先出(First In First Out ,简称 FIFO) ...
- 嵌入式框架Zorb Framework搭建二:环形缓冲区的实现
我是卓波,我是一名嵌入式工程师,我万万没想到我会在这里跟大家吹牛皮. 嵌入式框架Zorb Framework搭建过程 嵌入式框架Zorb Framework搭建一:嵌入式环境搭建.调试输出和建立时间系 ...
- C#环形缓冲区(队列)完全实现
公司项目中经常设计到串口通信,TCP通信,而且大多都是实时的大数据的传输,然后大家都知道协议通讯肯定涉及到什么,封包.拆包.粘包.校验--什么鬼的概念一大堆,说简单点儿就是要一个高效率可复用的缓存区. ...
- linux device driver —— 环形缓冲区的实现
还是没有接触到怎么控制硬件,但是在书里看到了一个挺巧妙的环形缓冲区实现. 此环形缓冲区实际为一个大小为bufsize的一维数组,有一个rp的读指针,一个wp的写指针. 在数据满时写进程会等待读进程读取 ...
- STM32 USB虚拟串口(转)
源:STM32 USB虚拟串口 串口调试在项目中被使用越来越多,串口资源的紧缺也变的尤为突出.很多本本人群,更是深有体会,不准备一个USB转串口工具就没办法进行开发.本章节来简单概述STM32低端芯片 ...
- 35.Linux-分析并制作环形缓冲区
在上章34.Linux-printk分析.使用printk调试驱动里讲述了: printk()会将打印信息存在内核的环形缓冲区log_buf[]里, 可以通过dmesg命令来查看log_buf[] 1 ...
- input子系统事件处理层(evdev)的环形缓冲区【转】
在事件处理层(evdev.c)中结构体evdev_client定义了一个环形缓冲区(circular buffer),其原理是用数组的方式实现了一个先进先出的循环队列(circular queue), ...
- 环形缓冲区-模仿linux kfifo【转】
转自:https://blog.csdn.net/vertor11/article/details/53741681 struct kfifo{ uint8_t *buffer; uint32_t i ...
- linux网络编程--Circular Buffer(Ring Buffer) 环形缓冲区的设计与实现【转】
转自:https://blog.csdn.net/yusiguyuan/article/details/18368095 1. 应用场景 网络编程中有这样一种场景:需要应用程序代码一边从TCP/IP协 ...
随机推荐
- 安卓手机360浏览器神奇bug,难以理解的
今天渠道组,说广告在安卓手机360浏览器上显示不了,我就去排查这个问题,发现所有安卓浏览器还真看不到广告,本来以为是360浏览器屏蔽了,,但是另一个项目就没事,后来经过几个小时的不断alert断点调试 ...
- 字符串的api (基础)
一.基础 1.字符串.charAt(index) 根据下标获取字符串的某一个字符 应用: 判断字符串的首字母是否大写 任意给定的一串字母,统计字符串里面的大写字母和小写字母的个数 2.字符串.inde ...
- 关于Java网络编程
一,网络编程中两个主要的问题 一个是如何准确的定位网络上一台或多台主机,另一个就是找到主机后如何可靠高效的进行数据传输. 在TCP/IP协议中IP层主要负责网络主机的定位,数据传输的路由,由IP地址可 ...
- 新手学习FFmpeg - 调用API计算关键帧渲染时间点
通过简单的计算来,线上I帧在视频中出现的时间点. 完整代码请参考 https://andy-zhangtao.github.io/ffmpeg-examples/ 名词解释 首先需要明确以下名词概念: ...
- springmvc项目中的中文乱码的解决及未生效解决
情景: springmvc项目中,在控制台输出时中文乱码,在web网页中正常. 解决方法: 在web.xml中添加如下代码: <!-- 中文乱码解决 --> <filter> ...
- win7右下角声音图标不见了
场景:开机后发生右下角的声音图标不见了,马上google,可能性有两种图标隐藏或者系统错误 隐藏处理方式:右下角下打开自定义--> 将它调为显示和通知(发生不好使,估计是系统错误) 系统错误处理 ...
- hbase数据备份或者容灾方案
HBase的数据备份或者容灾方案有这几种:Distcp,CopyTable,Export/Import,Snapshot,Replication,以下分别介绍(以下描述的内容均是基于0.94.20版本 ...
- 解决ie6上碰到的css兼容问题
ie6上css碰到的坑 前两天在给一个项目做东西的时候,碰到一个有意思的项目,是需要兼容ie6,有一些碰到并且解决的问题,给大家写下来,方便大家以后碰到类似的问题哈- 喜欢的话还请点赞! 1.impo ...
- 【Sentinel】sentinel 集成 apollo 最佳实践
[Sentinel]sentinel 集成 apollo 最佳实践 前言 在 sentinel 的控制台设置的规则信息默认都是存在内存当中的.所以无论你是重启了 sentinel 的客户端还是 s ...
- Kubernetes学习之k8s
k8s是什么 云原生 越来越多的开发者不仅使用容器作为应用部署和运行的载体,还积极使用了与容器这个应用载体天生匹配的微服务的架构,并依靠容器调度编排引擎的帮助,以保持对外部的敏捷性,这种容器化的微服务 ...