一、 数据准备

本文主要介绍Spark SQL的多表连接,需要预先准备测试数据。分别创建员工和部门的Datafame,并注册为临时视图,代码如下:

val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()

val empDF = spark.read.json("/usr/file/json/emp.json")
empDF.createOrReplaceTempView("emp")

val deptDF = spark.read.json("/usr/file/json/dept.json")
deptDF.createOrReplaceTempView("dept")

两表的主要字段如下:

emp员工表
 |-- ENAME: 员工姓名
 |-- DEPTNO: 部门编号
 |-- EMPNO: 员工编号
 |-- HIREDATE: 入职时间
 |-- JOB: 职务
 |-- MGR: 上级编号
 |-- SAL: 薪资
 |-- COMM: 奖金
dept部门表
 |-- DEPTNO: 部门编号
 |-- DNAME:  部门名称
 |-- LOC:    部门所在城市

注:emp.json,dept.json可以在本仓库的resources目录进行下载。

二、连接类型

Spark中支持多种连接类型:

  • Inner Join : 内连接;
  • Full Outer Join : 全外连接;
  • Left Outer Join : 左外连接;
  • Right Outer Join : 右外连接;
  • Left Semi Join : 左半连接;
  • Left Anti Join : 左反连接;
  • Natural Join : 自然连接;
  • Cross (or Cartesian) Join : 交叉(或笛卡尔)连接。

其中内,外连接,笛卡尔积均与普通关系型数据库中的相同,如下图所示:

这里解释一下左半连接和左反连接,这两个连接等价于关系型数据库中的INNOT IN字句:

-- LEFT SEMI JOIN
SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的IN语句
SELECT * FROM emp WHERE deptno IN (SELECT deptno FROM dept)

-- LEFT ANTI JOIN
SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的IN语句
SELECT * FROM emp WHERE deptno NOT IN (SELECT deptno FROM dept)

所有连接类型的示例代码如下:

2.1 INNER JOIN

// 1.定义连接表达式
val joinExpression = empDF.col("deptno") === deptDF.col("deptno")
// 2.连接查询
empDF.join(deptDF,joinExpression).select("ename","dname").show()

// 等价SQL如下:
spark.sql("SELECT ename,dname FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

2.2 FULL OUTER JOIN

empDF.join(deptDF, joinExpression, "outer").show()
spark.sql("SELECT * FROM emp FULL OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.3 LEFT OUTER JOIN

empDF.join(deptDF, joinExpression, "left_outer").show()
spark.sql("SELECT * FROM emp LEFT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.4 RIGHT OUTER JOIN

empDF.join(deptDF, joinExpression, "right_outer").show()
spark.sql("SELECT * FROM emp RIGHT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.5 LEFT SEMI JOIN

empDF.join(deptDF, joinExpression, "left_semi").show()
spark.sql("SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno").show()

2.6 LEFT ANTI JOIN

empDF.join(deptDF, joinExpression, "left_anti").show()
spark.sql("SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno").show()

2.7 CROSS JOIN

empDF.join(deptDF, joinExpression, "cross").show()
spark.sql("SELECT * FROM emp CROSS JOIN dept ON emp.deptno = dept.deptno").show()

2.8 NATURAL JOIN

自然连接是在两张表中寻找那些数据类型和列名都相同的字段,然后自动地将他们连接起来,并返回所有符合条件的结果。

spark.sql("SELECT * FROM emp NATURAL JOIN dept").show()

以下是一个自然连接的查询结果,程序自动推断出使用两张表都存在的dept列进行连接,其实际等价于:

spark.sql("SELECT * FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

由于自然连接常常会产生不可预期的结果,所以并不推荐使用。

三、连接的执行

在对大表与大表之间进行连接操作时,通常都会触发Shuffle Join,两表的所有分区节点会进行All-to-All的通讯,这种查询通常比较昂贵,会对网络IO会造成比较大的负担。

而对于大表和小表的连接操作,Spark会在一定程度上进行优化,如果小表的数据量小于Worker Node的内存空间,Spark会考虑将小表的数据广播到每一个Worker Node,在每个工作节点内部执行连接计算,这可以降低网络的IO,但会加大每个Worker Node的CPU负担。

是否采用广播方式进行Join取决于程序内部对小表的判断,如果想明确使用广播方式进行Join,则可以在DataFrame API 中使用broadcast方法指定需要广播的小表:

empDF.join(broadcast(deptDF), joinExpression).show()

参考资料

  1. Matei Zaharia, Bill Chambers . Spark: The Definitive Guide[M] . 2018-02

更多大数据系列文章可以参见个人 GitHub 开源项目: 程序员大数据入门指南

Spark学习之路(十二)—— Spark SQL JOIN操作的更多相关文章

  1. Spark学习之路 (二十二)SparkStreaming的官方文档

    官网地址:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.简介 1.1 概述 Spark Streamin ...

  2. Spark学习之路 (二)Spark2.3 HA集群的分布式安装

    一.下载Spark安装包 1.从官网下载 http://spark.apache.org/downloads.html 2.从微软的镜像站下载 http://mirrors.hust.edu.cn/a ...

  3. Spark学习之路 (二十三)SparkStreaming的官方文档

    一.SparkCore.SparkSQL和SparkStreaming的类似之处 二.SparkStreaming的运行流程 2.1 图解说明 2.2 文字解说 1.我们在集群中的其中一台机器上提交我 ...

  4. Spark学习之路 (二)Spark2.3 HA集群的分布式安装[转]

    下载Spark安装包 从官网下载 http://spark.apache.org/downloads.html 从微软的镜像站下载 http://mirrors.hust.edu.cn/apache/ ...

  5. Spark学习之路 (二十三)SparkStreaming的官方文档[转]

    SparkCore.SparkSQL和SparkStreaming的类似之处 SparkStreaming的运行流程 1.我们在集群中的其中一台机器上提交我们的Application Jar,然后就会 ...

  6. Spark学习之路 (二十八)分布式图计算系统

    一.引言 在了解GraphX之前,需要先了解关于通用的分布式图计算框架的两个常见问题:图存储模式和图计算模式. 二.图存储模式 巨型图的存储总体上有边分割和点分割两种存储方式.2013年,GraphL ...

  7. Spark学习之路 (二十)SparkSQL的元数据

    一.概述 SparkSQL 的元数据的状态有两种: 1.in_memory,用完了元数据也就丢了 2.hive , 通过hive去保存的,也就是说,hive的元数据存在哪儿,它的元数据也就存在哪儿. ...

  8. Spark学习之路 (二十八)分布式图计算系统[转]

    引言 在了解GraphX之前,需要先了解关于通用的分布式图计算框架的两个常见问题:图存储模式和图计算模式. 图存储模式 巨型图的存储总体上有边分割和点分割两种存储方式.2013年,GraphLab2. ...

  9. Spark学习之路 (二十)SparkSQL的元数据[转]

    概述 SparkSQL 的元数据的状态有两种: 1.in_memory,用完了元数据也就丢了 2.hive , 通过hive去保存的,也就是说,hive的元数据存在哪儿,它的元数据也就存在哪儿. 换句 ...

  10. Spark学习之路 (二十七)图简介

    一.图 1.1 基本概念 图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种数据结构. 这里的图并非指代数中的图.图可以对事物以及事物之间的关系建模,图可以用来表示自然发生的连接 ...

随机推荐

  1. Android中集成支付宝

    手机的在线支付,被认为是2012年最看好的功能,我个人认为这也是移动互联网较传统互联网将会大放光彩的一个功能. 人人有手机,人人携带手机,花钱买东西,不再需要取钱付现,不再需要回家上网银,想买什么,扫 ...

  2. 机器学习: Viola-Jones 人脸检测算法解析(二)

    上一篇博客里,我们介绍了VJ人脸检测算法的特征,就是基于积分图像的矩形特征,这些矩形特征也被称为Haar like features, 通常来说,一张图像会生成一个远远高于图像维度的特征集,比如一个 ...

  3. 3D场景中的鼠标响应事件

    原文:3D场景中的鼠标响应事件 今天要讲的是3D场景中的鼠标响应事件的处理,首先Button的响应是大家熟知的,只要加上一个click事件,然后写一个响应的处理时间就行了.对于二维平面上的一些控件也很 ...

  4. 创建一个显示所有预定义WPF颜色的ListBox

    原文 Creating a ListBox that Shows All Predefined WPF Colors 在WPF中,您可以使用Colors类访问一系列预定义颜色,这些颜色定义为Color ...

  5. WPF获取读取电脑指定文件夹中的指定文件的地址

    //保存指定文件夹中的指定文件的地址 string List<string> mListUri = new List<string>(); //文件夹地址 string fol ...

  6. FastDFS是纯C语言实现,只支持Linux,适合以中小文件为载体的在线服务,还可以冗余备份和负载均衡

    一.理论基础 FastDFS比较适合以中小文件为载体的在线服务,比如跟NGINX(APACHE)配合搭建图片服务器. 分布式文件系统FastDFS FastDFS是纯C语言实现,只支持Linux.Fr ...

  7. wpf实现两头渐窄的线条效果

    原文:wpf实现两头渐窄的线条效果 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/huangli321456/article/details/800 ...

  8. QProcess::startDetached(5.10有了一种新的方式)

    From Qt 5.10 on, there is a new way how to start detached processes with QProcess. Of course you kno ...

  9. 专访Jeffrey Richter:Windows 8是微软的重中之重

    Jeffrey Richter 以其多本 Windows 核心技术的经典著作而闻名,同时,他深入掌握微软的 .NET 等一系列核心技术,他所创办的 Wintellect 公司与微软有密切的合作关系,他 ...

  10. shell脚本自动化安装LAMP

    #!/bin/bash#auto make install LAMP#by authors yehailun #arp和apr-util依赖APR_FILES=apr-1.6.2.tar.gz APR ...