BZOJ4027/LG4107 「HEOI2015」兔子与樱花 树形DP+贪心
问题描述
题解
首先,我们可以直接令结点 \(x\) 的权值为 \(c[x]+son_x\) ,发现将 \(x,y\) 合并,相当于增加 \(c[x]+c[y]-1\) 的重量。
容易想到对于每个结点 \(x\) ,贪心的从小到大合并 \(c[y],y \in son(x)\) ,可以获得最大的答案。
\(\mathrm{Code}\)
#include<bits/stdc++.h>
using namespace std;
template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-'){fh=-1;ch=getchar(); }
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
}
const int maxn=2000007;
int n,m,ans;
int c[maxn];
vector<int>son[maxn];
bool comp(int x,int y){
return c[x]<c[y];
}
void dp(int x){
if(son[x].size()==0) return;
for(auto y:son[x]) dp(y);
sort(son[x].begin(),son[x].end(),comp);
c[x]+=son[x].size();
for(auto y:son[x]){
if(c[x]+c[y]-1<=m){
c[x]+=c[y]-1;
++ans;
}
else break;
}
}
int main(){
read(n);read(m);
for(int i=1;i<=n;i++) read(c[i]);
for(int i=1,k;i<=n;i++){
read(k);
for(int j=1,x;j<=k;j++){
read(x);++x;
son[i].push_back(x);
}
}
dp(1);
printf("%d\n",ans);
return 0;
}
BZOJ4027/LG4107 「HEOI2015」兔子与樱花 树形DP+贪心的更多相关文章
- 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心
题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...
- 【LOJ】#2118. 「HEOI2015」兔子与樱花
题解 怎么觉得都像树dp,不像贪心 但是树dp确实做不了 把每个节点的值设置为樱花+儿子数 把儿子合并到父亲上就是父亲的剩余容量加上儿子的值-1 每次在父亲的时候将儿子的值排序然后能加就加上 因为儿子 ...
- [BZOJ4027][HEOI2015]兔子与樱花 树形dp
Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...
- [bzoj4027][HEOI2015][兔子与樱花] (树形dp思想+玄学贪心)
Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...
- LOJ 3056 「HNOI2019」多边形——模型转化+树形DP
题目:https://loj.ac/problem/3056 只会写暴搜.用哈希记忆化之类的. #include<cstdio> #include<cstring> #incl ...
- LG3237 「HNOI2014」米特运输 树形DP
问题描述 LG3237 题解 问题转化为: 要求将这棵树,满足 结点 \(x\) 所有孩子权值相等 结点 \(x\) 权值等于所有孩子权值和 将乘法转化为 \(\log\) 加法 \(\mathrm{ ...
- 「SDOI2016」储能表(数位dp)
「SDOI2016」储能表(数位dp) 神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\) \(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 ...
- 【BZOJ】【4027】【HEOI2015】兔子与樱花
贪心 树上贪心问题……跟APIO2015练习赛的C很像啊…… 我的思路是:从叶子向上考虑,令a[x]表示x这个节点上樱花数量与儿子个数的和(即对于任意的x,都有$a[x]\leq m$)每次从儿子的a ...
- BZOJ 4027: [HEOI2015]兔子与樱花 树上dp
4027: [HEOI2015]兔子与樱花 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
随机推荐
- 大数据量数据库设计与优化方案(SQL优化)
转自:http://blog.sina.com.cn/s/blog_6c0541d50102wxen.html 一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的 ...
- nginx学习(三):nginx的进程模型
概述 nginx 进程分为 master进程和work进程 1.打开配置文件查看,这里我修改为2 [root@xxx conf]# vim nginx.conf #user nobody; worke ...
- 微信小程序开发——websocket测试
服务端 在windows下执行 node server.js 也可参照我的前一篇部署https var httpServ = require('http') var WebSocketServer ...
- 数据库导出--Oracle-dmp格式
expdp 数据库名/数据库密码@orcl directory=backdir dumpfile=导出文件名称.dmp 例: expdp bedManager_nt/123456@orcl direc ...
- 【洛谷5465】[PKUSC2018] 星际穿越(倍增)
点此看题面 大致题意: 给定\(l_{2\sim n}\),其中\(l_i\)表示\([l_i,i-1]\)的所有点与\(i\)之间存在一条长度为\(1\)的双向路径.每次询问给出\(l,r,x\), ...
- 【2019.8.15 慈溪模拟赛 T1】插头(plugin)(二分+贪心)
二分 首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案. 然后,我们只要贪心,就可以验证了. 贪心 不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能 ...
- 创建workbook及相关操作
通过openpyxl模块创建workbook时,无需本地事先创建好excel,它会直接创建一个新的excel文件 创建workbook时,会至少包含一个worksheet 注意:openpyxl模块只 ...
- COMP2521: Assignment
COMP2521: Assignment 2Social Network AnalysisA notice on the class web page will be posted after eac ...
- 基于 EntityFramework 生成 Repository 模式代码
借助 WeihanLi.EntityFramework 实现简单的 Repository Intro 很多时候一些简单的业务都是简单的增删改查,动态生成一些代码完成基本的增删改查,而这些增删改查代码大 ...
- 二级目录下的运行main.py,找不到上级目录的解决方法
import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))