【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)
题意:
题意好绕好绕...不想写了。
思路:
- 首先类似于分数规划做法,二分答案得到到每个点的最小危险度。
- 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间没有边。
- 这就是一个最小割,最终的图中不存在\(s\)到\(t\)的路径即可。
代码如下:
/*
* Author: heyuhhh
* Created Time: 2019/10/31 14:47:58
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 705, M = 100005;
const double eps = 1e-3;
int n, m;
#define _S heyuhhh
template <class T>
struct Dinic{
struct Edge{
int v, next;
T flow;
Edge(){}
Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {}
}e[M << 1];
int head[N], tot;
int dep[N];
void init() {
memset(head, -1, sizeof(head)); tot = 0;
}
void adde(int u, int v, T w, T rw = 0) {
e[tot] = Edge(v, head[u], w);
head[u] = tot++;
e[tot] = Edge(u, head[v], rw);
head[v] = tot++;
}
bool BFS(int _S, int _T) {
memset(dep, 0, sizeof(dep));
queue <int> q; q.push(_S); dep[_S] = 1;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(!dep[v] && e[i].flow > 0) {
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[_T] != 0;
}
T dfs(int _S, int _T, T a) {
T flow = 0, f;
if(_S == _T || a == 0) return a;
for(int i = head[_S]; ~i; i = e[i].next) {
int v = e[i].v;
if(dep[v] != dep[_S] + 1) continue;
f = dfs(v, _T, min(a, e[i].flow));
if(f) {
e[i].flow -= f;
e[i ^ 1].flow += f;
flow += f;
a -= f;
if(a == 0) break;
}
}
if(!flow) dep[_S] = -1;
return flow;
}
T dinic(int _S, int _T) {
T max_flow = 0;
while(BFS(_S, _T)) max_flow += dfs(_S, _T, 1e18);
return max_flow;
}
};
Dinic <double> solver;
struct Edge{
int v, next, t;
double w;
}e[M << 1];
int head[N], tot;
void adde(int u, int v, int t, double w) {
e[tot].v = v; e[tot].t = t; e[tot].w = w; e[tot].next = head[u]; head[u] = tot++;
}
int n1, m1;
double v[N];
bool vis[N];
double d[N];
double spfa(int T, double x) {
for(int i = 1; i <= n; i++) d[i] = 1e18, vis[i] = false ;
d[n] = 0; vis[n] = true;
queue <int> q; q.push(n);
while(!q.empty()) {
int u = q.front(); q.pop(); vis[u] = false;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
double w = e[i].t - 1.0 * x * e[i].w;
if(d[v] > d[u] + w) {
d[v] = d[u] + w;
if(!vis[v]) {
vis[v] = true; q.push(v);
}
}
if(v == T && d[v] < eps) return -1;
}
}
return d[T];
}
void run(){
memset(head, -1, sizeof(head)); tot = 0;
for(int i = 1; i <= m; i++) {
int a, b, t, s;
cin >> a >> b >> t >> s;
adde(a, b, t, s);
}
cin >> m1 >> n1;
for(int i = 1; i <= n1; i++) {
double l = 0, r = 1e9, ret = 1e9;
while(r - l > eps) {
double mid = (l + r) / 2;
if(spfa(i, mid) <= eps) r = mid, ret = mid;
else l = mid;
}
v[i] = ret;
}
//for(int i = 1; i <= n1; i++) cout << v[i] << ' ';
//cout << '\n';
int S = 0, T = n1 + 1;
solver.init();
for(int i = 1; i <= n1; i++) {
if(i & 1) solver.adde(S, i, v[i]);
else solver.adde(i, T, v[i]);
}
for(int i = 1; i <= m1; i++) {
int u, v; cin >> u >> v;
solver.adde(u, v, 1e9);
}
double ans = solver.dinic(S, T);
if(ans >= 1e9) cout << -1 << '\n';
else cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(1);
while(cin >> n >> m) run();
return 0;
}
【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)的更多相关文章
- 洛谷2494 [SDOI2011]保密 (分数规划+最小割)
自闭一早上 分数规划竟然还能被卡精度 首先假设我们已经知道了到每个出入口的时间(代价) 那我们应该怎么算最小的和呢? 一个比较巧妙的想法是,由于题目规定的是二分图. 我们不妨通过最小割的形式. 表示这 ...
- 洛咕 P2494 [SDOI2011]保密
出题人没素质啊,强行拼题还把题面写得又臭又长. 简单题面就是有一张图,每条边有两个权值\(t,s\),有无限支军队,一支军队可以打一个点,代价是从n到这个点的路径的\(\frac{\sum t}{\s ...
- zoj 2676 Network Wars 0-1分数规划+最小割
题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...
- 【BZOJ3232】圈地游戏 分数规划+最小割
[BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...
- bzoj 3232: 圈地游戏【分数规划+最小割】
数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量 ...
- bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...
- 【洛谷P3973】[TJOI2015]线性代数(最小割)
洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...
- HDU 2676 Network Wars 01分数规划,最小割 难度:4
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...
- 【洛谷 P3227】 [HNOI2013]切糕(最小割)
题目链接 每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\). 这样就得到了\(P*Q\)条链,不考虑\ ...
随机推荐
- 流程控制之if,while,for
流程控制之if,while,for 一.if语法 就一个条件 age_of_girl = 18 if age_of_girl < 25: print("小姐姐") 两个条件 ...
- python列表转换为字符串
对于非纯字符串组成的列表,需要使用map(str, 列表)转换,纯字符串组成的列表则不需要转换 list1 = [1, 2, 3, 4, 5]c = ','.join(map(str,list1))p ...
- mysql-python 安装错误: Cannot open include file: 'config-win.h': No such file or directory
问题描述: pip instal MySQL-python 出现如下错误: Installing collected packages: MySql-python Running setup.py i ...
- 数组中的第K个最大元素
在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2输出: 5示 ...
- 超实用的Java web面试题
Java web面试题 1.Tomcat的优化经验 答:去掉对web.xml的监视,把jsp提前编辑成Servlet. 有富余物理内存的情况,加大tomcat使用的jvm的内存 2.HTTP请求的GE ...
- WPF 精修篇 附加属性
原文:WPF 精修篇 附加属性 微软把DLL都开源了 今天看了一下 很多WPF实现内容都在里面 https://referencesource.microsoft.com/ 说附加属性 附加属性 是 ...
- Java笔记(持续更新)
码云地址 https://gitee.com/MarkPolaris/Java_Mark
- postgresql 笔记
客户端GUI 在官网下载一个,在安装的时候,不安装 server 端,会在客户端 安装一个 pgadmin .
- IT兄弟连 Java语法教程 三目运算符
Java提供了一个特殊的三目(三个分支)运算符,它可以替代特定类型的if-then-else语句结构.这个运算符是“?”乍一看可能有一些困惑,但一旦理解“?”运算符,就可以高效地使用它.“?”运算符的 ...
- IT兄弟连 Java语法教程 数据类型3
字符型 在Java中,用于存储字符串的数据类型是char.然而,C/C++程序员要当心:Java中的char与C或C++中的char是不同的.在C/C++中,char的宽度是8位.而在Java中不是这 ...