luoguP3306 [SDOI2013]随机数生成器
将\(x_1,x_2,x_3...x_n\)写出来可以发现通项为\(a^{i-1}*x_1+b*\sum\limits_{j=0}^{i-2}a^j=a^{i-1}*x_1+b*\frac{1-a^{i-1}}{1-a}=(x_1-\frac{b}{1-a})a^{i-1}+\frac{b}{1-a}\)
所求变为求一个\(i\)满足:
\(t\equiv (x_1-\frac{b}{1-a})a^{i-1}+\frac{b}{1-a}\pmod{p}\)
\(a^{i-1}\equiv \frac{t-(\frac{b}{1-a})}{x_1-\frac{b}{1-a}}\pmod{p}\)
上BSGS即可,注意特判\(a=0/1\)。
\(a=0\):对于任意\(i,x_i=b\)
\(a=1\):\(x_i=x_1+(i-1)*b\)
解下对应的方程即可。
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int T;
ll a,b,x1,mod,goal;
inline ll power(ll x,ll k,ll mod)
{
ll res=1;
while(k)
{
if(k&1)res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
inline ll inv(ll x,ll mod){return power(x,mod-2,mod);}
inline ll BSGS(ll a,ll b,ll mod)
{
if(b==1)return 0;
unordered_map<ll,int>mp;mp.clear();
a%=mod,b%=mod;
ll t=ceil(sqrt(mod));
ll now=1;
for(int i=0;i<=t;i++)mp[b*now%mod]=i,now=now*a%mod;
a=power(a,t,mod);
if(!a)return !b?1:-1;
now=a;
for(int i=1;i<=t;i++)
{
if(mp.count(now))return i*t-mp[now];
now=now*a%mod;
}
return -1;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld%lld%lld",&mod,&a,&b,&x1,&goal);
if(x1==goal){puts("1");continue;}
if(!a){puts(b==goal?"2":"-1");continue;}
if(a==1)
{
goal=((goal-x1)%mod+mod)%mod;
ll d=__gcd(b,mod);
if(goal%d){puts("-1");continue;}
ll res=(goal*inv(b,mod)+1)%mod;
if(!res)res=mod;
printf("%lld\n",res);
continue;
}
ll res=BSGS(a,((goal-b*inv(1-a,mod)%mod)%mod+mod)%mod*inv(((x1-b*inv(1-a,mod)%mod)%mod+mod)%mod,mod)%mod,mod);
printf("%lld\n",res==-1?res:res+1);
}
return 0;
}
luoguP3306 [SDOI2013]随机数生成器的更多相关文章
- 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1442 Solved: 552 Description ...
- bzoj3122 [SDOI2013]随机数生成器
bzoj3122 [SDOI2013]随机数生成器 给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\) 求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\) \(0\l ...
- 洛咕 P3306 [SDOI2013]随机数生成器
洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...
- 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判
[BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b, ...
- 【bzoj3122】: [Sdoi2013]随机数生成器 数论-BSGS
[bzoj3122]: [Sdoi2013]随机数生成器 当a>=2 化简得 然后 BSGS 求解 其他的特判 : 当 x=t n=1 当 a=1 当 a=0 判断b==t /* http: ...
- 【洛谷 P3306】[SDOI2013]随机数生成器 (BSGS)
题目链接 怎么这么多随机数生成器 题意见原题. 很容易想到\(BSGS\)算法,但是递推式是\(X_{i+1}=(aX_i+b)\mod p\),这显然不是一个等比数列. 但是可以用矩阵乘法来求出第\ ...
- bzoj 3122: [Sdoi2013]随机数生成器
#include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...
- bzoj 3122 [Sdoi2013]随机数生成器(逆元,BSGS)
Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...
- BZOJ3122: [Sdoi2013]随机数生成器(BSGS)
题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...
随机推荐
- Less(5)
考查点:双查询报错注入 1.先判断注入类型 (1)首先看到要求,要求传一个ID参数,并且要求是数字型的:?id=1 (2)再输入?id=1' 显示报错,报错多了一个单引号 (3)再输入?id=1'' ...
- Django celery 使用
0.安装包 cachetools 3.1.1 celery 3.1.26.post2 celery-with-redis 3.0 certifi 2019.9.11 Django 2.2.6 djan ...
- docker搭建kafka环境&&Golang生产和消费
docker 搭建kafka环境 version: '2' services: zk1: image: confluentinc/cp-zookeeper:latest hostname: zk1 c ...
- 第04组 Alpha冲刺(2/4)
队名:斗地组 组长博客:地址 作业博客:Alpha冲刺(2/4) 各组员情况 林涛(组长) 过去两天完成了哪些任务: 1.收集各个组员的进度 2.写博客 展示GitHub当日代码/文档签入记录: 接下 ...
- Linux 学习记录三(Vim 文书编辑器).
所有的Unix Like系统都会内建vi文书编辑器,其他的文书编辑器不一定存在,vim是vi的升级版,具有程序编辑的能力,可以主动的以字体颜色辨别语法的正确性,方便程序设计.vim 里面加入了很 ...
- react组件通信方式汇总
父组件更新组件状态,通过props传递给子组件,子组件得到后进行更新.Timer 是倒计时子组件,集成在了OrderPay父组件里,父组件向子组件传订单数据参数order对象.如下代码: <Ti ...
- 洛谷 P2657 (数位DP)
### 洛谷 P2657 题目链接 ### 题目大意:给你一个数的范围 [A,B] ,问你这段区间内,有几个数满足如下条件: 1.两个相邻数位上的数的差值至少为 2 . 2.不包含前导零. 很简单的数 ...
- [转]探索ASP.NET Core 3.0 系列
这是该系列的第一篇文章:探索ASP.NET Core 3.0. 第1部分-探索新的项目文件Program.cs和通用主机(本文) 第2部分-比较ASP.NET Core 3.0模板之间的Startup ...
- CENTOS 7 升级内核版本(附带升级脚本)
写在前面的话 对于系统而言,除非是那种安全性要求非常高的公司或者经常会有第三方安全机构对其漏洞扫描的才容易涉及到系统的内核升级,比如之前呆过一个公司,因为需要做三级等保的原因,就会涉及到系统扫描,这时 ...
- python基础(5):格式化输出、基本运算符、编码问题
1. 格式化输出 现在有以下需求,让⽤户输入name, age, job,hobby 然后输出如下所⽰: ------------ info of Alex Li ----------- Name : ...