一、背景

分布式系统中我们会对一些数据量大的业务进行分拆,如:用户表,订单表。因为数据量巨大一张表无法承接,就会对其进行分库分表。

但一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题。

1.1 唯一ID的特性

  1. 整个系统ID唯一;
  2. ID是数字类型,而且是趋势递增;
  3. ID简短,查询效率快。

1.2 递增与趋势递增

递增 趋势递增
第一次生成的ID为12,下一次生成的ID是13,再下一次生成的ID是14。 什么是?如:在一段时间内,生成的ID是递增的趋势。如:再一段时间内生成的ID在【0,1000】之间,过段时间生成的ID在【1000,2000】之间。但在【0-1000】区间内的时候,ID生成有可能第一次是12,第二次是10,第三次是14。

二、方案

2.1 UUID

UUID全称:Universally Unique Identifier。标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:9628f6e9-70ca-45aa-9f7c-77afe0d26e05

  • 优点:
  1. 代码实现简单;
  2. 本机生成,没有性能问题;
  3. 因为是全球唯一的ID,所以迁移数据容易。
  • 缺点:
  1. 每次生成的ID是无序的,无法保证趋势递增;
  2. UUID的字符串存储,查询效率慢;
  3. 存储空间大;
  4. ID本身无业务含义,不可读。
  • 应用场景:
  1. 类似生成token令牌的场景;
  2. 不适用一些要求有趋势递增的ID场景,不适合作为高性能需求的场景下的数据库主键。

也有在线生成UUID的网站,如果你的项目上用到了UUID,可以用来生成临时的测试数据。https://www.uuidgenerator.net/

2.2 MySQL主键自增

利用了MySQL的主键自增auto_increment,默认每次ID1

优点:

  1. 数字化,ID递增;
  2. 查询效率高;
  3. 具有一定的业务可读。
  • 缺点:
  1. 存在单点问题,如果MySQL挂了,就没法生成ID了;
  2. 数据库压力大,高并发抗不住。

2.3 MySQL多实例主键自增

这个方案就是解决MySQL 的单点问题,在auto_increment基本上面,设置step步长

如上,每台的初始值分别为1,2,3...N,步长为N(这个案例步长为4

  • 优点:解决了单点问题;
  • 缺点:一旦把步长定好后,就无法扩容;而且单个数据库的压力大,数据库自身性能无法满足高并发。
  • 应用场景:数据不需要扩容的场景。

2.4 基于Redis实现

  • 单机:Redisincr函数在单机上是原子操作,可以保证唯一且递增。

  • 集群:单机Redis可能无法支撑高并发。集群情况下,可以使用步长的方式。比如有5个Redis节点组成的集群,它们生成的ID分别为:

A: 1,6,11,16,21
B: 2,7,12,17,22
C: 3,8,13,18,23
D: 4,9,14,19,24
E: 5,10,15,20,25
  • 优点:有序递增,可读性强。
  • 缺点:占用带宽,每次要向Redis进行请求。

三、优化方案

3.1、改造数据库主键自增

数据库的自增主键的特性,可以实现分布式ID,适合做userId,正好符合如何永不迁移数据和避免热点? 但这个方案有严重的问题:

  1. 一旦步长定下来,不容易扩容;
  2. 数据库压力山大。
  • 为什么压力大?

因为我们每次获取ID的时候,都要去数据库请求一次。那我们可以不可以不要每次去取?

可以请求数据库得到ID的时候,可设计成获得的ID是一个ID区间段。

  • 上图ID规则表含义:
  1. id表示为主键,无业务含义;
  2. biz_tag为了表示业务,因为整体系统中会有很多业务需要生成ID,这样可以共用一张表维护;
  3. max_id表示现在整体系统中已经分配的最大ID;
  4. desc描述;
  5. update_time表示每次取的ID时间;
  • 整体流程:
  1. 【用户服务】在注册一个用户时,需要一个用户ID;会请求【生成ID服务(是独立的应用)】的接口;

  2. 【生成ID服务】会去查询数据库,找到user_tagid,现在的max_id0step=1000;

  3. 【生成ID服务】把max_idstep返回给【用户服务】;并且把max_id更新为max_id = max_id + step,即更新为1000;

  4. 【用户服务】获得max_id=0step=1000;

  5. 这个用户服务可以用ID=【max_id + 1,max_id+step】区间的ID,即为【1,1000】;

  6. 【用户服务】会把这个区间保存到jvm中;

  7. 【用户服务】需要用到ID的时候,在区间【1,1000】中依次获取ID,可采用AtomicLong中的getAndIncrement方法;

  8. 如果把区间的值用完了,再去请求【生产ID服务】接口,获取到max_id1000,即可以用【max_id + 1,max_id+step】区间的ID,即为【1001,2000】

  9. 该方案就非常完美的解决了数据库自增的问题,而且可以自行定义max_id的起点,和step步长,非常方便扩容;

  10. 也解决了数据库压力的问题,因为在一段区间内,是在jvm内存中获取的,而不需要每次请求数据库。即使数据库宕机了,系统也不受影响,ID还能维持一段时间。

3.2 竞争问题

以上方案中,如果是多个用户服务,同时获取ID,同时去请求【ID服务】,在获取max_id的时候会存在并发问题。如:

用户服务A,取到的max_id=1000 ;用户服务B取到的也是max_id=1000,那就出现了问题,ID重复了。

解决方案是:加分布式锁,保证同一时刻只有一个用户服务获取max_id

3.3 突发阻塞问题

因为竞争问题,所有只有一个用户服务去操作数据库,其他二个会被阻塞。出现的现象就是一会儿突然系统耗时变长,怎么去解决?

  • buffer方案

流程如下:

  1. 当前获取IDbuffer1中,每次获取IDbuffer1中获取;
  2. buffer1中的ID 已经使用到了100,也就是达到区间的10%;
  3. 达到了10%,先判断buffer2中有没有去获取过,如果没有就立即发起请求获取ID线程,此线程把获取到的ID,设置到buffer2中;
  4. 如果buffer1用完了,会自动切换到buffer2;
  5. buffer2用到10%了,也会启动线程再次获取,设置到buffer1中;
  6. 依次往返。

3.4 总结

  1. buffer的方案就达到了业务场景用的ID,都是在jvm内存中获得的,从此不需要到数据库中获取了,数据库宕机时长长点儿也没太大影响了。
  2. 因为会有一个线程,会观察什么时候去自动获取。两个buffer之间自行切换使用,就解决了突发阻塞的问题。

四、其他方式

还有一些其他的ID生成方案,比如:

  1. 滴滴:时间+起点编号+车牌号;
  2. 淘宝订单:时间戳+用户ID
  3. 其他电商:时间戳+下单渠道+用户ID,有的会加上订单第一个商品的ID;
  4. MongoDBID:通过时间+机器码+pid+inc共12个字节,4+3+2+3的方式最终标识成一个24长度的十六进制字符。

分布式全局唯一ID生成策略​的更多相关文章

  1. 分布式全局唯一ID生成策略

    为什么分布式系统需要用到ID生成系统 在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识.如在美团点评的金融.支付.餐饮.酒店.猫眼电影等产品的系统中,数据日渐增长,对数据库的分库分表后需要有 ...

  2. 常见分布式全局唯一ID生成策略

    全局唯一的 ID 几乎是所有系统都会遇到的刚需.这个 id 在搜索, 存储数据, 加快检索速度 等等很多方面都有着重要的意义.工业上有多种策略来获取这个全局唯一的id,针对常见的几种场景,我在这里进行 ...

  3. (4.24)【mysql、sql server】分布式全局唯一ID生成方案

    参考:分布式全局唯一ID生成方案:https://blog.csdn.net/linzhiqiang0316/article/details/80425437 分表生成唯一ID方案 sql serve ...

  4. 分布式全局唯一ID的实现

    分布式全局唯一ID的实现 前言 上周末考完试,这周正好把工作整理整理,然后也把之前的一些素材,整理一番,也当自己再学习一番. 一方面正好最近看到几篇这方面的文章,另一方面也是正好工作上有所涉及,所以决 ...

  5. 框架篇:分布式全局唯一ID

    前言 每一次HTTP请求,数据库的事务的执行,我们追踪代码执行的过程中,需要一个唯一值和这些业务操作相关联,对于单机的系统,可以用数据库的自增ID或者时间戳加一个在本机递增值,即可实现唯一值.但在分布 ...

  6. Mysql系列七:分库分表技术难题之分布式全局唯一id解决方案

    一.前言 在前面的文章Mysql系列四:数据库分库分表基础理论中,已经说过分库分表需要应对的技术难题有如下几个: 1. 分布式全局唯一id 2. 分片规则和策略 3. 跨分片技术问题 4. 跨分片事物 ...

  7. 分布式全局唯一ID与自增序列

    包含时间顺序的ID 此场景最简单的实现方案,就是采用 twitter 的 Snowflake 算法.ID总长64位,第1位不可用,41位表示时间戳,10位表示生成机器的id,后12位表示序列号. 为什 ...

  8. 关于全局唯一ID生成方法

    引:最近业务开发过程中需要涉及到全局唯一ID生成.之前零零总总的收集过一些相关资料,特此整理以便后用 本博客已经迁移至:http://cenalulu.github.io/ 本篇博文已经迁移,阅读全文 ...

  9. 数据库分库分表(一)常见分布式主键ID生成策略

    主键生成策略 系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,下面介绍一些常见的ID生成策略. Sequence ID UUID GUID COMB Snowflake 最开始的自增ID为了实 ...

随机推荐

  1. Unknown class XXViewController in Interface Builder file.”问题处理

    “Unknown class XXViewController in Interface Builder file.”问题处理   在静态库中写了一个XXViewController类,然后在主工程的 ...

  2. vmware虚拟机扩大硬盘

    记录一下对vmware虚拟机扩大硬盘的过程.操作有风险,重要数据请先进行备份. 1.首先在vcenter中将虚拟机下电,然后编辑虚拟机,将虚拟机硬盘扩大.具体操作见下图 2.打开虚拟机电源,利用fdi ...

  3. CF 1130A 1130B 1130C1129A1 1129A2 1129B(Round542A B C D1 D2 E)题解

    A : Be Positive 题目地址:https://codeforces.com/problemset/problem/1130/A 题解:让你求是否满足一个d使得数列长为n的a数组的每个数除以 ...

  4. 数理统计(一)——用Python进行方差分析

    数理统计(一)——Python进行方差分析 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 方差分析可以用来推断一个或多个因素在其状态变化时,其因素水平或交互 ...

  5. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning

    In federated learning, multiple client devices jointly learn a machine learning model: each client d ...

  6. WSL(Windows Subsystem for Linux) Ubuntu 下byobu状态栏错误的问题

    关于WSL的,Win10 的Linux子系统如何安装,就不赘述了,Win10商店里就有,至于win7和win8.1想装这个估计也不行,所以跳过. 最近处于好奇,也懒得弄VMware的虚拟机(那玩意儿占 ...

  7. Day 02 计算机的基本组成及工作原理

    目录 计算机的构成 CPU 控制器 运算器 存储器 内存 外存 I/O (input & output) 输入设备 输出设备 什么是编程语言 什么是编程 为什么要编程 多核CPU 32位和64 ...

  8. 选择排序 C&&C++

    选择排序 选择排序即在每一步中选取最小值重新排列,从而达到排序的目的   流程: (1)先从原始数组选择一个最小数据和第一个位置交换 (2)剩下的n-1个数据选择最小的和第二个位置交换 (3)不断重复 ...

  9. screen虚拟终端工具

    说明:有时候我们要执行一个命令或脚本,需要几小时甚至几天,但是不能中断,有时想查看当前输出信息的时候,可以将它丢到后台运行,但是后台运行却无法显示或输出相关信息出来:我们可以使用一个虚拟终端工具scr ...

  10. 【Java Web开发学习】Spring环境profile

    [Java Web开发学习]Spring 环境profile 转载:http://www.cnblogs.com/yangchongxing/p/8890702.html 开发.测试.生产环境往往是不 ...