CodeForces 812E Sagheer and Apple Tree 树上nim
题解:
先分析一下, 如果只看叶子层的话。
那么就相当于 经典的石子问题 nim 博弈了。
那我们看非叶子层。
看叶子层的父亲层。
我们可以发现, 如果从这一层移动x个苹果到叶子,那么另一个人就可以吃掉这x个苹果。 不影响任何的前后手。
然后我们再分析,叶子层父亲的父亲。如果从这里移动到下一层,就相当于是吃掉了这x个苹果。因为就算另一个人再移动这x个苹果, 你也可以把他吃掉,这样就相当于没有任何影响。
所以,我们如果将和叶子同奇偶深度的点的值xor一下。 如果是0的话就后手必胜,否则就先手胜利。
根据这点我们在讨论一下交换就好了。
代码:
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e5 + ;
vector<int> vc[N];
map<int,int> odd, even;
int a[N];
int deep[N];
int ans = ;
int num = ;
void dfs(int u){
for(int v : vc[u]){
deep[v] = deep[u] + ;
dfs(v);
}
if(!(deep[u]&)){
ans ^= a[u];
even[a[u]]++;
++num;
}
else
odd[a[u]]++;
}
int main(){
int n;
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%d", &a[i]);
for(int i = , v; i <= n; ++i){
scanf("%d", &v);
deep[i] = deep[v] + ;
vc[v].pb(i);
}
if(deep[n] & ) deep[] = ;
dfs();
LL tot = ;
if(ans == ){
tot = (num - 1ll) * num / ;
num = n - num;
tot += (num - 1ll) * num / ;
}
for(auto it : even){
int tans = ans ^ it.fi;
if(odd.count(tans)){
tot += 1ll * it.se * odd[tans];
}
}
cout << tot << endl;
return ;
}
默认叶子节点是偶数层。
所以如果根是深度为0的话,叶子是奇数的话,就把根的深度改成1,使得叶子是偶数的。
CodeForces 812E Sagheer and Apple Tree 树上nim的更多相关文章
- codeforces 812E Sagheer and Apple Tree(思维、nim博弈)
codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...
- Codeforces 812E Sagheer and Apple Tree
大致题意: 给你一颗树,这个树有下列特征:每个节点上有若干个苹果,且从根节点到任意叶子节点的路径长度奇偶性相同. 甲和乙玩(闲)游(得)戏(慌). 游戏过程中,甲乙轮流将任意一个节点的若干个苹果移向它 ...
- Codeforces 812E Sagheer and Apple Tree ——(阶梯博弈)
之前在bc上做过一道类似的阶梯博弈的题目,那题是移动到根,这题是移动到叶子.换汤不换药,只要和终态不同奇偶的那些位置做nim即可.因此这题给出了一个条件:所有叶子深度的奇偶性相同.同时需要注意的是,上 ...
- Atcoder #017 agc017 D.Game on Tree 树上NIM 博弈
LINK 题意:树上NIM的模板题,给出一颗树,现有操作删去端点不为根节点的边,其另一端节点都将被移除,不能取者为败 思路:一看就是个NIM博弈题,只是搬到树上进行,树上DFS进行异或 记得#014D ...
- codeforces 812 E. Sagheer and Apple Tree(树+尼姆博弈)
题目链接:http://codeforces.com/contest/812/problem/E 题意:有一颗苹果树,这个苹果树所有叶子节点的深度要不全是奇数,要不全是偶数,并且包括根在内的所有节点上 ...
- XJOI 3363 树4/ Codeforces 739B Alyona and a tree(树上差分+路径倍增)
D. Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces 739B Alyona and a tree(树上路径倍增及差分)
题目链接 Alyona and a tree 比较考验我思维的一道好题. 首先,做一遍DFS预处理出$t[i][j]$和$d[i][j]$.$t[i][j]$表示从第$i$个节点到离他第$2^{j}$ ...
- Codeforces 842C Ilya And The Tree 树上gcd
题目链接 题意 给定一棵根为\(1\)的树.定义每个点的美丽值为根节点到它的路径上所有点的\(gcd\)值.但是对于每个点,在计算它的美丽值时,可以将这条路径上某个点的值变为\(0\)来最大化它的美丽 ...
- Codeforces E. Alyona and a tree(二分树上差分)
题目描述: Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
随机推荐
- 在ABP中灵活使用AutoMapper
demo地址:ABP.WindowsService 该文章是系列文章 基于.NetCore和ABP框架如何让Windows服务执行Quartz定时作业 的其中一篇. AutoMapper简介 Auto ...
- java并发之ConcurrentLinkedQueue
在并发编程中,我们可能经常需要用到线程安全的队列,JDK提供了两种模式的队列:阻塞队列和非阻塞队列.阻塞队列使用锁实现,非阻塞队列使用CAS实现.ConcurrentLinkedQueue是一个基于链 ...
- Git 学习笔记之(一) 使用 git gui 从github上下载代码
背景: 目前一些开源代码均在 GitHub上管理的,包括自己写的代码也可以放在上面进行管理.但问题是,当你换一台电脑,想要将你自己放在 GitHub 上的代码工程下载下来的时候,会遇到各种问题,目前可 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- SpringBoot配置web访问H2
[**前情提要**]最近开始搭建博客,在本地调试的时候使用的数据库是h2,但是调试的时候需要查看数据库,本文也由此而来. --- 下面是我用到的方法: 1. 使用IDEA的Database连接工具,具 ...
- bio,nio,aio学习
http://qindongliang.iteye.com/blog/2018539 1 同步 指的是用户进程触发IO操作并等待或者轮询的去查看IO操作是否就绪 自己上街买衣服,自己亲自干这件事,别的 ...
- 算法与数据结构基础 - 位运算(Bit Manipulation)
位运算基础 说到与(&).或(|).非(~).异或(^).位移等位运算,就得说到位运算的各种奇淫巧技,下面分运算符说明. 1. 与(&) 计算式 a&b,a.b各位中同为 1 ...
- maven的不同版本下载及环境配置
Maven不同版本下载及环境配置 Maven下载 去到官网 https://maven.apache.org/ 会发现是最新版本,但是一般下载的话,都会下载比最新的版本要低两到三个小版本的,这里就下载 ...
- Jmeter 01 Jmeter下载安装及入门
jmeter简介 Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域.--百度百科 下载 下载 ...
- SpringMVC 原理 - 设计原理、启动过程、请求处理详细解读
SpringMVC 原理 - 设计原理.启动过程.请求处理详细解读 目录 一. 设计原理 二. 启动过程 三. 请求处理 一. 设计原理 Servlet 规范 SpringMVC 是基于 Servle ...