Sagheer and Apple Tree

题解:

先分析一下, 如果只看叶子层的话。

那么就相当于 经典的石子问题 nim 博弈了。

那我们看非叶子层。

看叶子层的父亲层。

我们可以发现, 如果从这一层移动x个苹果到叶子,那么另一个人就可以吃掉这x个苹果。 不影响任何的前后手。

然后我们再分析,叶子层父亲的父亲。如果从这里移动到下一层,就相当于是吃掉了这x个苹果。因为就算另一个人再移动这x个苹果, 你也可以把他吃掉,这样就相当于没有任何影响。

所以,我们如果将和叶子同奇偶深度的点的值xor一下。 如果是0的话就后手必胜,否则就先手胜利。

根据这点我们在讨论一下交换就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e5 + ;
vector<int> vc[N];
map<int,int> odd, even;
int a[N];
int deep[N];
int ans = ;
int num = ;
void dfs(int u){
for(int v : vc[u]){
deep[v] = deep[u] + ;
dfs(v);
}
if(!(deep[u]&)){
ans ^= a[u];
even[a[u]]++;
++num;
}
else
odd[a[u]]++;
}
int main(){
int n;
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%d", &a[i]);
for(int i = , v; i <= n; ++i){
scanf("%d", &v);
deep[i] = deep[v] + ;
vc[v].pb(i);
}
if(deep[n] & ) deep[] = ;
dfs();
LL tot = ;
if(ans == ){
tot = (num - 1ll) * num / ;
num = n - num;
tot += (num - 1ll) * num / ;
}
for(auto it : even){
int tans = ans ^ it.fi;
if(odd.count(tans)){
tot += 1ll * it.se * odd[tans];
}
}
cout << tot << endl;
return ;
}

默认叶子节点是偶数层。

所以如果根是深度为0的话,叶子是奇数的话,就把根的深度改成1,使得叶子是偶数的。

CodeForces 812E Sagheer and Apple Tree 树上nim的更多相关文章

  1. codeforces 812E Sagheer and Apple Tree(思维、nim博弈)

    codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...

  2. Codeforces 812E Sagheer and Apple Tree

    大致题意: 给你一颗树,这个树有下列特征:每个节点上有若干个苹果,且从根节点到任意叶子节点的路径长度奇偶性相同. 甲和乙玩(闲)游(得)戏(慌). 游戏过程中,甲乙轮流将任意一个节点的若干个苹果移向它 ...

  3. Codeforces 812E Sagheer and Apple Tree ——(阶梯博弈)

    之前在bc上做过一道类似的阶梯博弈的题目,那题是移动到根,这题是移动到叶子.换汤不换药,只要和终态不同奇偶的那些位置做nim即可.因此这题给出了一个条件:所有叶子深度的奇偶性相同.同时需要注意的是,上 ...

  4. Atcoder #017 agc017 D.Game on Tree 树上NIM 博弈

    LINK 题意:树上NIM的模板题,给出一颗树,现有操作删去端点不为根节点的边,其另一端节点都将被移除,不能取者为败 思路:一看就是个NIM博弈题,只是搬到树上进行,树上DFS进行异或 记得#014D ...

  5. codeforces 812 E. Sagheer and Apple Tree(树+尼姆博弈)

    题目链接:http://codeforces.com/contest/812/problem/E 题意:有一颗苹果树,这个苹果树所有叶子节点的深度要不全是奇数,要不全是偶数,并且包括根在内的所有节点上 ...

  6. XJOI 3363 树4/ Codeforces 739B Alyona and a tree(树上差分+路径倍增)

    D. Alyona and a tree time limit per test  2 seconds memory limit per test  256 megabytes input  stan ...

  7. Codeforces 739B Alyona and a tree(树上路径倍增及差分)

    题目链接 Alyona and a tree 比较考验我思维的一道好题. 首先,做一遍DFS预处理出$t[i][j]$和$d[i][j]$.$t[i][j]$表示从第$i$个节点到离他第$2^{j}$ ...

  8. Codeforces 842C Ilya And The Tree 树上gcd

    题目链接 题意 给定一棵根为\(1\)的树.定义每个点的美丽值为根节点到它的路径上所有点的\(gcd\)值.但是对于每个点,在计算它的美丽值时,可以将这条路径上某个点的值变为\(0\)来最大化它的美丽 ...

  9. Codeforces E. Alyona and a tree(二分树上差分)

    题目描述: Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

随机推荐

  1. 使用Kubeadm创建k8s集群之节点部署(三十一)

    前言 本篇部署教程将讲述k8s集群的节点(master和工作节点)部署,请先按照上一篇教程完成节点的准备.本篇教程中的操作全部使用脚本完成,并且对于某些情况(比如镜像拉取问题)还提供了多种解决方案.不 ...

  2. tab切换echarts无法正常显示问题

    项目中使用到了Echarts来在展示图表,两个tab切换页面中都存在图表,页面加载完成后 对所有图表进行了初始化和绘制,然后切换查看时,发现图表的宽度不正确.,第一个tab显示是很正常的,但是第二个t ...

  3. gitee+hexo搭建个人博客

    通过gitee和hexo搭建个人博客 首先准备软件: git (提供命令git) git官网 notepad++(方便编辑)notepad++官网 nodejs(hexo依赖)nodejs官网 7z( ...

  4. c#实现深拷贝的几种方法

    为什么要用到深拷贝呢?比如我们建了某个类Person,并且实例化出一个对象,然后,突然需要把这个对象复制一遍,并且复制出来的对象要跟之前的一模一样,来看下我们一般会怎么做,看代码 public cla ...

  5. 教老婆学Linux运维(一)初识Linux

    零.前言 之一 为什么写这个系列?为什么是Linux? 老婆自从怀孕以后,辞职在家待了好几年了,现在时常感觉与社会脱节.所以想找个工作. 做了多年程序员,有点人脉也都基本是在IT圈子里,只能帮忙找找I ...

  6. C#使用WebClient调用接口

    用于上传图片base64位 private void upLoadCunzai() { errorstring += " upLoadCunzai方法执行成功:用于上传已经存在人员摄像头照片 ...

  7. 三层架构(MVC)实现简单登陆注册验证(含验证码)

    前言在我的上一篇微博里我已经提出了登陆的方法,当时我采取的是纯servlet方式,因为当时刚接触到servlet,正好网上没有这方面的全面讲解,所以我就发飙了.不过在现实生产中我们大多采用的三层架构. ...

  8. 减谈迷宫C++

    今天老师让做了个迷宫问题,我一看到就发现和我之前写过的一个程序是一样 的,但是在后来编写的时候有一个地方搞错了,最后下课了我还是没有正确的编写好,然后今天回来之后自己有看了一下,现在已经解决了. #i ...

  9. Spring Boot Security Oauth2之客户端模式及密码模式实现

    Spring Boot Security Oauth2之客户端模式及密码模式实现 示例主要内容 1.多认证模式(密码模式.客户端模式) 2.token存到redis支持 3.资源保护 4.密码模式用户 ...

  10. (三十一)c#Winform自定义控件-文本框(四)

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...