题目

给定两个字符串str1和str2, 长度分别稳M和N,返回两个字符串的最长公共子串

解法一

这是一道经典的动态规划题,可以用M*N的二维dp数组求解.dp[i][j]代表以str1[i]和str2[j]当做公共子串结尾的情况下,公共子串能有多长.然后分析可以发现dp[i][j]只与dp[i- 1][j - 1]有关:当str1[i] 和str2[j]相等的时候, dp[i][j] = dp[i - 1][j - 1] + 1;当它们不相等的时候,dp[i][j] = 0.获得dp数组之后要获得最长公共子串只需要找到数组中最大的值,其值代表最长子串的长度,其所在的索引代表了子串在原字符串中结束的位置.

代码

先获取dp数组,然后通过dp数组得到最长公共子串

//最长公共子串的dp数组
vector<vector<int> > getdp1(string str1, string str2) {
vector<vector<int> > dp(str1.length(), vector<int>(str2.length()));
if (str1.length() == 0 || str2.length() == 0)
return dp;
dp[0][0] = str1[0] == str2[0] ? 1 : 0;
for (int i = 1; i < int(str1.length()); i ++)
dp[i][0] = str1[i] == str2[0] ? 1 : 0;
for (int j = 1; j < int(str2.length()); j ++)
dp[0][j] = str2[j] == str1[0] ? 1 : 0; for (int i = 1; i < int(str1.length()); i ++) {
for (int j = 1; j < int(str2.length()); j ++) {
if (str1[i] == str2[j])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = 0;
}
}
return dp;
} // 最长公共子串的解法一
string lcst1(string str1, string str2) {
string res = "";
if (int(str1.length()) == 0 || int(str2.length()) == 0)
return res;
vector<vector<int> > dp = getdp1(str1, str2);
int maxNum = 0;
int maxIndex;
for (int i = 0; i < int(dp.size()); i ++) { // 遍历dp矩阵找到最大值
for (int j = 0; j < int(dp[0].size()); j ++)
if (dp[i][j] > maxNum) {
maxNum = dp[i][j];
maxIndex = i;
}
} res = str1.substr(maxIndex - maxNum + 1, maxNum);
return res;
}

解法二

上面这种解法需要的时间复杂度和空间复杂度都是O(M* N).下面提供一种空间复杂度为O(1)的解法

代码

//最长公共子串解法二
string lcst2(string str1, string str2) {
string res = "";
if (int(str1.length()) == 0 || int(str2.length()) == 0)
return res; int maxNum = 0; //记录最大值
int maxindex = -1; //记录最大值的索引
int tmpNum; //记录当前值,如果大于最大值就更新
int i = int(str1.length()) - 1;
int j = int(str2.length()) - 1;
for (j; j >= 0; j --) { // 斜线先向左移动
tmpNum = 0;
for (int tmp = 0; tmp < int(str2.length()) - j; tmp ++){
if (str1[tmp] == str2[j + tmp]) {
tmpNum = tmpNum == 0 ? 1 : tmpNum + 1;
} else
tmpNum = 0;
if (tmpNum > maxNum) {
maxNum = tmpNum;
maxindex = j + tmp;
}
}
} bool triangleUpFlag = true; //maxindex 在通过斜线计算的时候属于上三角的flag
for (i; i > 0; i --) { //列移到最左边之后再向下移动
tmpNum = 0;
for (int tmp = 0; tmp < int(str1.length()) - i; tmp ++) {
if (str2[tmp] == str1[i + tmp])
tmpNum = tmpNum == 0 ? 1 : tmpNum + 1;
else
tmpNum == 0;
if (tmpNum > maxNum) {
maxNum = tmpNum;
triangleUpFlag = false;
maxindex = i + tmp;
}
}
} cout<<maxindex<<" "<<maxNum<<" "<<triangleUpFlag<<endl;
res = triangleUpFlag == true ? str2.substr(maxindex - maxNum + 1, maxNum) : str1.substr(maxindex - maxNum + 1, maxNum);
return res;
} int main()
{
string str1 = "1AB2345CD";
string str2 = "12345EF";
//string str1 = "abcde";
//string str2 = "bebcd";
cout<<lcst2(str1, str2)<<endl; //输出2345
return 0;
}

[DP]最长公共子串的更多相关文章

  1. poj1159 dp最长公共子串

    //Accepted 204 KB 891 ms //dp最长公共子串 //dp[i][j]=max(dp[i-1][j],dp[i][j-1]) //dp[i][j]=max(dp[i][j],dp ...

  2. DP:LCS(最长公共子串、最长公共子序列)

    1. 两者区别 约定:在本文中用 LCStr 表示最长公共子串(Longest Common Substring),LCSeq 表示最长公共子序列(Longest Common Subsequence ...

  3. [程序员代码面试指南]递归和动态规划-最长公共子串问题(DP,LCST)

    问题描述 如题. 例:输入两个字符串 str1="1AB234",str2="1234EF" ,应输出最长公共子串"234". 解题思路 状 ...

  4. 最长公共子串(DP)

    DP基础_最长公共子串 Description 两个序列的最长公共子串,这个子串要求在序列中是连续的.如:"bab"和"caba" (可以看出来最长公共子串是& ...

  5. 经典算法-最长公共子序列(LCS)与最长公共子串(DP)

    public static int lcs(String str1, String str2) { int len1 = str1.length(); int len2 = str2.length() ...

  6. HDU 1503 带回朔路径的最长公共子串

    http://acm.hdu.edu.cn/showproblem.php?pid=1503 这道题又WA了好几次 在裸最长公共子串基础上加了回溯功能,就是给三种状态各做一个 不同的标记.dp[n][ ...

  7. 动态规划(一)——最长公共子序列和最长公共子串

    注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式 ...

  8. 最长公共子串 NYOJ 36

    http://acm.nyist.net/JudgeOnline/problem.php?pid=36 最长公共子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 ...

  9. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

随机推荐

  1. flask 异步celery使用

    在开发过程中,耗时长,超时的任务经常发生,比如:获取后端某个大文件数据超时.需要后端计算任务超时,等等, 此时我们就会很自然的想到异步方式,根据需要完成的任务创建一个task_id, 由前端来监听该任 ...

  2. codeforces1088D_Ehab and another another xor problem交互题

    传送门 一道考验思维的交互题 大致思路就是从最高的二进制位向下询问 代入例子比如: 5 6 6 5 7 4 6 4 讨论一下 交互题的重点学会推理和归纳 #include <bits/stdc+ ...

  3. 有趣的RPC理解

    RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协议假定某些传输协议的存在,如TCP或UDP,为通 ...

  4. 关于JSP页面的静态包含和动态包含

    JSP中有两种包含:静态包含:<%@include file="被包含页面"%> 和 动态包含:<jsp:include page="被包含页面&quo ...

  5. .net软件日常开发规范-基本标准

    一. 基本标准 代码和SQL脚本均不要出现无意义的空格和空行. 所有SQL脚本确保可以重复运行不出错,添加数据的脚本重复运行不会重复添加数据. 能用一行代码或脚本解决的不要写出两行,能用一个方法解决的 ...

  6. html5标签整理

    html元素 基础标签 <!DOCTYPE> 定义文档类型(e.g  <!DOCTYPE  html>) <html>定义一个HTML文档</html> ...

  7. Javarscipt中数组或者字符串的随机排序方法

    在日常开发中,经常会遇到随机排序的需求,思路就是利用Math.random()方法,抽取随机数,让数组中的元素进行对调: 话不多说直接上代码,方法一:基本思路就是将a中随机抽取一个元素,放入b中,再从 ...

  8. 【数学+思维】ZZULIOJ 1531: 小L的区间求和

    题目链接 题目描述 在给定的一个整数序列中,小L希望找到一个连续的区间,这个区间的和能够被k整除,请你帮小L算一下满足条件的最长的区间长度是多少. 输入 第一行输入两个整数n.k.(1 <= n ...

  9. Python机器学习之数据探索可视化库yellowbrick

    # 背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plot ...

  10. Selenium+java - PageFactory设计模式

    前言 上一小节我们已经学习了Page Object设计模式,优势很明显,能更好的体现java的面向对象思想和封装特性.但同时也存在一些不足之处,那就是随着这种模式使用,随着元素定位获取,元素定位与页面 ...