LOJ.6160.[美团CodeM初赛 RoundA]二分图染色(容斥 组合)
\(Description\)
求在\(2n\)个点的完全二分图(两边各有\(n\)个点)上确定两组匹配,使得两个匹配没有交集的方案数。
\(n\leq10^7\)。
\(Solution\)
不考虑限制,令\(f_i\)表示在\(2i\)个点的二分图上任意确定一组匹配的方案数,确定两组匹配的方案数就是\(f_n^2\)。
对于限制,考虑容斥,枚举令多少个匹配强制相同,即\(Ans=\sum\limits_{i=0}^n(-1)^ii!(C_n^i)^2f_{n-i}^2\)。
对于\(f_n\),一个显然的求法是\(f_n=\sum_{i=0}^ni!(C_n^i)^2\)。但这样总复杂度就是\(O(n^2)\)了。
打个表可以找出规律:\(f_n=2nf_{n-1}-(n-1)^2f_{n-2}\)。
理性思考一下\(f_n\)为什么这么递推,即如何由\(n-1\)推到\(n\)。不考虑限制,第\(n\)对点有\(2n-1\)种和其它点匹配的方案,再加上不选这对点方案数就是\(2nf_{n-1}\)。
假设第\(n\)对点中连出的匹配和\((i,j)\)相同,那么有\((n-1)^2\)种可能,每种可能的方案数都是\(f_{n-2}\)。所以减掉\((n-1)^2f_{n-2}\)。
//3127ms 117372K
#include <cstdio>
#include <cctype>
#include <algorithm>
#define mod 1000000007
#define gc() getchar()
typedef long long LL;
const int N=1e7+5;
int f[N],fac[N],ifac[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now*f;
}
inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=1ll*x*x%mod)
if(k&1) t=1ll*t*x%mod;
return t;
}
int main()
{
int n=read(); fac[0]=1;
for(int i=1; i<=n; ++i) fac[i]=1ll*fac[i-1]*i%mod;
ifac[n]=FP(fac[n],mod-2);
for(int i=n; i; --i) ifac[i-1]=1ll*ifac[i]*i%mod;
f[0]=1, f[1]=2;
for(int i=2; i<=n; ++i) f[i]=(2ll*i*f[i-1]-1ll*(i-1)*(i-1)%mod*f[i-2])%mod;
LL ans=0,tmp=1ll*fac[n]*fac[n]%mod;
#define v (tmp*ifac[n-i]%mod*ifac[n-i]%mod*ifac[i]%mod*f[n-i]%mod*f[n-i]%mod)
for(int i=0; i<=n; ++i) ans+=i&1?-v:v;
printf("%lld\n",(ans%mod+mod)%mod);
return 0;
}
LOJ.6160.[美团CodeM初赛 RoundA]二分图染色(容斥 组合)的更多相关文章
- #6164. 「美团 CodeM 初赛 Round A」数列互质-莫队
#6164. 「美团 CodeM 初赛 Round A」数列互质 思路 : 对这个题来言,莫队可以 n*根号n 离线处理出各个数出现个的次数 ,同时可以得到每个次数出现的次数 , 但是还要处理有多少 ...
- 【LOJ#6374】网格(二项式反演,容斥)
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...
- Loj #6164. 「美团 CodeM 初赛 Round A」数列互质
link : https://loj.ac/problem/6164 莫队傻题,直接容斥做. #include<bits/stdc++.h> #define maxn 100005 #de ...
- 「美团 CodeM 初赛 Round A」试题泛做
最长树链 树形DP.我们发现gcd是多少其实并不重要,只要不是1就好了,此外只要有一个公共的质数就好了.计f[i][j]表示i子树内含有j因子的最长链是多少.因为一个数的不同的质因子个数是log级别的 ...
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- P4491 [HAOI2018]染色 容斥+NTT
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...
- Gym 100548F Color 给花染色 容斥+组合数学+逆元 铜牌题
Problem F. ColorDescriptionRecently, Mr. Big recieved n flowers from his fans. He wants to recolor th ...
- loj #6177. 「美团 CodeM 初赛 Round B」送外卖2 状压dp floyd
LINK:#6177.美团 送外卖2 一道比较传统的状压dp题目. 完成任务 需要知道自己在哪 已经完成的任务集合 自己已经接到的任务集合. 考虑这个dp记录什么 由于存在时间的限制 考虑记录最短时间 ...
随机推荐
- 初识 go 语言:数据类型
目录 数据类型 指针 结构体 数组 切片 切片的方法 映射 函数闭包 结束语 前言: go语言的第三篇文章,主要讲述go语言中的数据类型,包括指针,结构体,数组,切片,映射,函数闭包等,每个都提供了示 ...
- python实现加密
1.md5加密 hashlib 库中包括如SHA1.SHA224.SHA256.SHA384.SHA512和MD5算法等 >>> import hashlib>>> ...
- Java使用DOM4J对XML文件进行增删改查操作
Java进行XML文件操作,代码如下: package com.founder.mrp.util; import java.io.File; import java.util.ArrayList; i ...
- idea设置java内存
-Xms1024m -Xmx10240m -XX:MaxPermSize=512m 设置环境变量JAVA_OPTS="-server -Xms800m -Xmx800m -XX:PermSi ...
- HDU 5984(求木棒切割期望 数学)
题意是给定一长为 L 的木棒,每次任意切去一部分直到剩余部分的长度不超过 D,求切割次数的期望. 若木棒初始长度不超过 D,则期望是 0.000000: 设切割长度为 X 的木棒切割次数的期望是 F( ...
- Flask Web中文教程
Flask Web中文教程:http://docs.jinkan.org/docs/flask/
- ArcGis恢复初始设置(默认设置、出厂设置)的方法
警告:下面的操作涉及更改操作系统的重要组成部分.必要时,请咨询计算机系统专业人士. 重命名 ESRI 文件夹即对 ArcGIS 恢复出厂设置,因此必须重新安装当前安装的所有第三方工具.自定义脚本和自定 ...
- [译]Ocelot - Big Picture
原文 目录 Big Picture Getting Started Configuration Routing Request Aggregation Service Discovery Authen ...
- [Kubernetes]编排其实很简单
什么是编排 Kubernetes中,我们总是在说一个概念:编排. 在[Kubernetes]谈谈Kubernetes的本质这篇文章中,关于"编排"的概念介绍了一下:过去很多集群管理 ...
- linux文件系统初始化过程(4)---加载initrd(中)
一.目的 上文详细介绍了CPIO格式的initrd文件,本文从源代码角度分析加载并解析initrd文件的过程. initrd文件和linux内核一般存储在磁盘空间中,在系统启动阶段由bootload负 ...