In James Munkres "Topology" Section 22, the quotient space is defined as below.

Definition Let \(X\) be a topological space, and let \(X^*\) be a partition of \(X\) into disjoint subsets whose union is \(X\). Let \(p: X \rightarrow X^*\) be the surjective map that carries each point of \(X\) to the element of \(X^*\) containing it. In the quotient topology induced by \(p\), the space \(X^*\) is called a quotient space of \(X​\).

The key factors in this definition are:

  1. According to section 3, the quotient space \(X^*\) as a partition of \(X\) is associated with a unique equivalence relation on \(X\). This equivalence relation specifies which points in the original space \(X\) will be treated as a same point in the new space \(X^*\).
  2. The quotient map \(p: X \rightarrow X^*\) for constructing the quotient topology on \(X^*\) introduces the concept of saturated sets, which are pre-images of subsets in \(X^*\). \(p\) ensures the image of any saturated open/closed set in \(X\) is still open/closed in \(X^*\).

With these concepts in mind, we can take paper folding and pasting as an example. Let the space \(X\) be a piece of paper. The equivalence classes on \(X\) determine which parts of this piece of paper will be pasted together. Meanwhile, the quotient map \(p\) collects the neighborhoods around every points in \(X\) that are to be pasted into a common point \(x_0\) in \(X^*\) and builds up a new neighborhood of \(x_0\) in \(X^*\). The neighborhoods of points in \(X\) are defined with respect to the subspace topology on \(X\), which is induced from the standard topology on \(\mathbb{R}^2\). The neighborhoods of points in \(X^*\) are defined with respect to the quotient topology on \(X^*\). That the quotient map \(p\) is surjective implies the whole paper is kept during the operations without cutting off any part. Hence, the obtained quotient space \(X^*​\) is just the piece of paper after these folding and pasting operations. The following figure illustrates the above metaphor of quotient space by folding a piece of rectangular paper into a cylinder.

Figure. Illustration of quotient space using the example of paper folding and pasting.

Metaphor of quotient space的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  2. Metaphor of topological basis and open set

    The definition of topological basis for a space $X$ requires that each point $x$ in $X$ is contained ...

  3. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in

    https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...

  4. java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出

    上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...

  5. Eclipse中启动tomcat报错java.lang.OutOfMemoryError: PermGen space的解决方法

    有的项目引用了太多的jar包,或者反射生成了太多的类,异或有太多的常量池,就有可能会报java.lang.OutOfMemoryError: PermGen space的错误, 我们知道可以通过jvm ...

  6. myeclipse 内存不够用报错PermGen space 和 An internal error has occurred.

    最近项目中又增加了新的模块,项目的代码又多了不少.运行的时候总是报如下错误 Exception in thread "http-apr-80-exec-6" java.lang.O ...

  7. java.lang.OutOfMemoryError: PermGen space及其解决方法

    PermGen space的全称是Permanent Generation space,是指内存的永久保存区域OutOfMemoryError: PermGen space从表面上看就是内存益出,解决 ...

  8. User space 与 Kernel space

    学习 Linux 时,经常可以看到两个词:User space(用户空间)和 Kernel space(内核空间). 简单说,Kernel space 是 Linux 内核的运行空间,User spa ...

  9. java.lang.OutOfMemoryError: PermGen space错误解决方法

    1. MyEclipse 中报 PermGen space       window--> preferences-->Myclipse-->Servers-->Tomcat- ...

随机推荐

  1. react16 渲染流程

    前言 react升级到16之后,架构发生了比较大的变化,现在不看,以后怕是看不懂了,react源码看起来也很麻烦,也有很多不理解的地方. 大体看了一下渲染过程. react16架构的变化 react ...

  2. 树莓派wiringPi,BCM,BOARD编码对应管脚

    wiringPi,BCM,BOARD编码 由于上课需要, 嵌入式学习从树莓派开始 树莓派中执行: $> gpio readall 即可得到关于树莓派管脚的各种信息 上面的图可能不是特别清楚, 可 ...

  3. python之路day12--装饰器的进阶

    装饰器# 开发原则:开发封闭原则# 装饰器的作用:在不改变原函数的调用函数下,在函数的前后添加功能.# 装饰器的本质:闭包函数 import time def timmer(f): #func #ti ...

  4. Python并发编程之多线程使用

    目录 一 开启线程的两种方式 二 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别 三 练习 四 线程相关的其他方法 五 守护线程 六 Python GIL(Global Interpret ...

  5. JavaEESpringMVC基础整理

    1.什么是 SpringMVC ? 在介绍什么是 SpringMVC 之前,我们先看看 Spring 的基本架构.如下图: 我们可以看到,在 Spring 的基本架构中,红色圈起来的 Spring W ...

  6. IIS 常用命令

    Ø  简介 本文主要介绍 IIS 常用的命令,主要包含以下内容: 1.   IIS  重启方法 2.   站点重启方法 3.   应用程序池重启方法 1.   IIS 重启方法 1)   重启 IIS ...

  7. 论文翻译——Lattice indexing for spoken term detection

    第II节简要介绍与本文有关的先前工作第III节介绍文中使用的定义以及术语 第IV节介绍如何从原始ASR lattices中生成倒排索引结构 第V节详细介绍了ASR结构以及实验使用的数据 第VI节提供了 ...

  8. mint-ui Picker设置指定初始值

    最近做的项目公司需求是信息输入页设置地址跳转下一页后,再返回信息输入页查看信息时,地址要默认显示前面选择的地址,以此记录下,需要小伙伴可以看看 data{return{}}中设置   :slots 在 ...

  9. P5303 [GXOI/GZOI2019]逼死强迫症

    题目地址:P5303 [GXOI/GZOI2019]逼死强迫症 这里是官方题解 初步分析 从题目和数据范围很容易看出来这是一个递推 + 矩阵快速幂,那么主要问题在于递推的过程. 满足条件的答案一定是以 ...

  10. Linux查看日志工具

    ⒈journalctl journalctl是Centos7才有的工具用于systemd统一管理所有unit的启动日志,只用一个journalctl命令就可以查看所有的日志(包括内核日志和应用日志), ...