Metaphor of quotient space
In James Munkres "Topology" Section 22, the quotient space is defined as below.
Definition Let \(X\) be a topological space, and let \(X^*\) be a partition of \(X\) into disjoint subsets whose union is \(X\). Let \(p: X \rightarrow X^*\) be the surjective map that carries each point of \(X\) to the element of \(X^*\) containing it. In the quotient topology induced by \(p\), the space \(X^*\) is called a quotient space of \(X\).
The key factors in this definition are:
- According to section 3, the quotient space \(X^*\) as a partition of \(X\) is associated with a unique equivalence relation on \(X\). This equivalence relation specifies which points in the original space \(X\) will be treated as a same point in the new space \(X^*\).
- The quotient map \(p: X \rightarrow X^*\) for constructing the quotient topology on \(X^*\) introduces the concept of saturated sets, which are pre-images of subsets in \(X^*\). \(p\) ensures the image of any saturated open/closed set in \(X\) is still open/closed in \(X^*\).
With these concepts in mind, we can take paper folding and pasting as an example. Let the space \(X\) be a piece of paper. The equivalence classes on \(X\) determine which parts of this piece of paper will be pasted together. Meanwhile, the quotient map \(p\) collects the neighborhoods around every points in \(X\) that are to be pasted into a common point \(x_0\) in \(X^*\) and builds up a new neighborhood of \(x_0\) in \(X^*\). The neighborhoods of points in \(X\) are defined with respect to the subspace topology on \(X\), which is induced from the standard topology on \(\mathbb{R}^2\). The neighborhoods of points in \(X^*\) are defined with respect to the quotient topology on \(X^*\). That the quotient map \(p\) is surjective implies the whole paper is kept during the operations without cutting off any part. Hence, the obtained quotient space \(X^*\) is just the piece of paper after these folding and pasting operations. The following figure illustrates the above metaphor of quotient space by folding a piece of rectangular paper into a cylinder.

Figure. Illustration of quotient space using the example of paper folding and pasting.
Metaphor of quotient space的更多相关文章
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- Metaphor of topological basis and open set
The definition of topological basis for a space $X$ requires that each point $x$ in $X$ is contained ...
- In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in
https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...
- java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出
上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...
- Eclipse中启动tomcat报错java.lang.OutOfMemoryError: PermGen space的解决方法
有的项目引用了太多的jar包,或者反射生成了太多的类,异或有太多的常量池,就有可能会报java.lang.OutOfMemoryError: PermGen space的错误, 我们知道可以通过jvm ...
- myeclipse 内存不够用报错PermGen space 和 An internal error has occurred.
最近项目中又增加了新的模块,项目的代码又多了不少.运行的时候总是报如下错误 Exception in thread "http-apr-80-exec-6" java.lang.O ...
- java.lang.OutOfMemoryError: PermGen space及其解决方法
PermGen space的全称是Permanent Generation space,是指内存的永久保存区域OutOfMemoryError: PermGen space从表面上看就是内存益出,解决 ...
- User space 与 Kernel space
学习 Linux 时,经常可以看到两个词:User space(用户空间)和 Kernel space(内核空间). 简单说,Kernel space 是 Linux 内核的运行空间,User spa ...
- java.lang.OutOfMemoryError: PermGen space错误解决方法
1. MyEclipse 中报 PermGen space window--> preferences-->Myclipse-->Servers-->Tomcat- ...
随机推荐
- MongoDB常用配置项目
systemLog: destination: file logAppend: true path: /data/mongod/log/mongod-rs1.log processManagem ...
- netcore项目在Centos部署:nohup和supervisor方式
Centos上部署netcore项目 1 准备工作 在Centos上部署netcore应用程序有两种常用方式:nohup和supervisord,这里简单演示一下这两种部署方式. 首先我们写一个简单的 ...
- JAVA之锁-volatile
锁是JAVA多线程关键,也是面试中必问的, 在此好好总结一下. (先要从进程和线程说起,此处先欠下,回头专门说一下操作系统是怎么管理进程和线程的) 说到多线程就要说说JAVA的内存模型:图片来自于网络 ...
- ArcGIS——2015年中国各省GDP总量分级图(6等级)
- macOS Mojave配置OpenGL开发环境
---恢复内容开始--- 前言: 本文写作目的: 是由于本人参考 csdn原文 的方法配置环境时踩了很多坑,所以在此写一篇文防止以后用到. 工具: Xcode CMake 步骤: 准备工作: Xcod ...
- C51学习
十六个数字循环显示 #include<reg52.h>#include<intrins.h>#define uint unsigned int#define uchar uns ...
- move_base Warning: Invalid argument "/map" passed to canTransform argument target_frame的解决方法
把global_costmap_params.yaml和local_costmap_params.yaml文件里的头几行去掉“/”,然后重新编译就可以了. 效果如下:
- VS发布网站时,报错提示:“未能将文件xxx复制到xxx,未能找到文件xx”三种解决方案!
发布网站时候大家可能会遇到这样的情况,就是报错提示说:“未能将文件xxx复制到xxx,未能找到文件xx”,这个问题一般来说有三种解决方案,个人倾向第三种,如图: 解决方案如下: 方案一.把系统提示缺失 ...
- day 21 - 2 练习
三级菜单 menu = { '北京': { '海淀': { '五道口': { 'soho': {}, 'google': {}, '网易': {} }, '中关村': { '爱奇艺': {}, '汽车 ...
- php 进行跨域操作
本地配置两个域名: http://www.concent.com 主域名 http://s.concent.com/ 子域名 在主域名下添加跨域代码: ini_set('session ...