参考黄文坚《TensorFlow实战》一书,完成AlexNet的整体实现并展望其训练和预测过程。

import tensorflow as tf

batch_size = 32
num_batches = 100 # 显示网络每一层结构,展示每一个卷积层或池化层输出tensor的尺寸,接受一个tensor作为输入
def print_activations(t):
print(t.op.name, ' ', t.get_shape().as_list()) # 接受images作为输入,返回最后一层pool5(第五个池化层)
# 及parameters(AlexNet中所有需要训练的模型参数)'''
def inference(images):
parameters = [] with tf.name_scope('conv1') as scope:
# 用截断的正态分布函数(标准差为0.1)初始化卷积核的参数kernel。卷积核尺寸为11*11,颜色通道为3,卷积核数量为64
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64],
dtype=tf.float32, stddev=1e-1), name='weights')
# 使用tf.nn.conv2d对输入images完成卷积操作
conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
print_activations(conv1)
parameters += [kernel, biases]
# LRN处理和最大池化处理
lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001/9, beta=0.75, name='lrn1')
pool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='VALID', name='pool1')
print_activations(pool1) # 打印输出结果pool1的结构 # 设计第二个卷积层 卷积核尺寸5*5 输入通道数64 卷积核数量192
with tf.name_scope('conv2') as scope:
kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192],
dthpe=tf.float32, stddev=1e-1), name='weights')
# 卷积步长全部设为1,即扫描全图像素
conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv2) lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001/9, beta=0.75, name='lrn2')
pool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='VALID', name='pool2')
print_activations(pool2) # 创建第三个卷积层 卷积核尺寸3*3 输入通道数192 卷积核数量384 步长全为1
with tf.name_scope('conv3') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
dthpe=tf.float32, stddev=1e-1), name='weights')
# 卷积步长全部设为1,即扫描全图像素
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv3) # 创建第四个卷积层 卷积核尺寸3*3 输入通道数384 卷积核数量降为256
with tf.name_scope('conv4') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
dthpe=tf.float32, stddev=1e-1), name='weights')
# 卷积步长全部设为1,即扫描全图像素
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv4) # 最后的第五个卷积层 卷积核尺寸3*3 输入通道数256 卷积核数量为256
with tf.name_scope('conv5') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
dthpe=tf.float32, stddev=1e-1), name='weights')
# 卷积步长全部设为1,即扫描全图像素
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv5) # 在5个卷积层之后,还有一个最大池化层,这个池化层和前两个卷积层后的池化层一致
pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='VALID', name='pool5')
print_activations(pool5) return pool5, parameters
# 在正式使用AlexNet来训练或预测时,还需要添加3个全连接层,隐含节点数分别为4096、4096、1000

后续形成实现卷积神经网络构建、训练、测试的代码架构,会将Alexnet实现结构重新组织完整和优化。

tensorFlow入门实践(三)初识AlexNet实现结构的更多相关文章

  1. c++开发ocx入门实践三--基于opencv的简易视频播发器ocx

    原文:http://blog.csdn.net/yhhyhhyhhyhh/article/details/51404649  利用opencv做了个简易的视频播放器的ocx,可以在c++/c#/web ...

  2. tensorFlow入门实践(三)实现lenet5(代码结构优化)

    这两周我学习了北京大学曹建老师的TensorFlow笔记课程,认为老师讲的很不错的,很适合于想要在短期内上手完成一个相关项目的同学,课程在b站和MOOC平台都可以找到. 在卷积神经网络一节,课程以le ...

  3. OpenCL入门:(三:GPU内存结构和性能优化)

    如果我们需要优化kernel程序,我们必须知道一些GPU的底层知识,本文简单介绍一下GPU内存相关和线程调度知识,并且用一个小示例演示如何简单根据内存结构优化. 一.GPU总线寻址和合并内存访问 假设 ...

  4. tensorflow入门(三)

    三种代价函数 1,二次代价函数   式子代表预测值与样本值的差得平方和 由于使用的是梯度下降法,我们对变量w,b分别求偏导: 这种函数对于处理线性的关系比较好,但是如果遇到s型函数(如下图所示),效率 ...

  5. Docker入门实践(三) 基本操作

    Docker安装完毕.我们就能够试着来执行一些命令了.看看docker能够干什么. (一) 创建一个容器 首先.让我们执行一个最简单的容器,hello-world.假设安装没有问题.并执行正确的话,应 ...

  6. tensorFlow入门实践(二)模块化

    实现过一个例子之后,对TensorFlow运行机制有了初步的了解,但脑海中还没有一个如何实现神经网络的一个架构模型.下面我们来探讨如何模块化搭建神经网络,完成数据训练和预测. 首先我们将整体架构分为两 ...

  7. tensorFlow入门实践(一)

    首先应用TensorFlow完成一个线性回归,了解TensorFlow的数据类型和运行机制. import tensorflow as tf import numpy as np import mat ...

  8. TensorFlow入门(三)多层 CNNs 实现 mnist分类

    欢迎转载,但请务必注明原文出处及作者信息. 深入MNIST refer: http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mni ...

  9. TensorFlow入门(五)多层 LSTM 通俗易懂版

    欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经 ...

随机推荐

  1. Cannot resolve classpath entry: /Program Files/IBM/SQLLIB/java/db2java.zip

    在mybatis的逆向工程中,使用java代码和xml配置文件生成时出现以下的错误 原来自己在复制官方配置文件的参考时将这一句也复制了进来 删掉后运行即可!成功的话控制台是没有输出的

  2. .NET Core WEB API使用Swagger生成在线接口文档

    1项目引用Swashbuckle.AspNetCore程序集和Microsoft.Extensions.PlatformAbstractions程序集 右击项目打开"管理NuGet程序包.. ...

  3. tomcat发布项目如何通过域名直接访问

    首先在服务器中找到tomcat安装后的文件夹,进入到conf目录下,找到server.xml文件 打开并修改,修改如下: 第一步:修改port,该值默认为8080,将其修改为80 第二步:修改defa ...

  4. Django_创建项目

    安装django pip install Django 将下面路径添加到系统环境变量的path中 C:\Users\12978\AppData\Local\Programs\Python\Python ...

  5. python--多线程多进程

    一.进程 对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程.进程是很多资源 ...

  6. Spring教程笔记(3)

    getBean() ApplicationContext接口获取Bean方法简介: • Object getBean(String name) 根据名称返回一个Bean,客户端需要自己进行类型转换: ...

  7. 解决MySQL数据库连接太多,多数Sleep

    1.查看当前所有连接的详细资料: mysqladmin -uroot -proot processlist 客户端使用: show full processlist 2.只查看当前连接数(Thread ...

  8. python web 2

    思路整理 过程:请求豆瓣电影 top 250 url='https://movie.douban.com/' 结果:得到网页的html 源码 (保存为hml文件 就可以用浏览器打开) 提示: Loca ...

  9. lumion材质系统室内渲染6.3

    材质系统是对于导入的模型,而不对自带的模型起作用.自带的模型有的能改变属性. 点击“材质”点击墙,出来材质库.为墙体赋予一种材质, 完成后点击保存,就可以保存了.然后给窗户添加玻璃材质. 可以看到墙, ...

  10. python修炼第七天

    第七天面向对象进阶,面向对象编程理解还是有些难度的,但是我觉得如果弄明白了,要比函数编程过程编程省事多了.继续努力! 1.面向对象补充: 封装 广义上的封装:把变量和函数都放在类中狭义上的封装:把一些 ...