Description

Input

Output

输出test行,每行一个整数,表示答案。

Sample Input

1

2

2 2

3 1

Sample Output

3

HINT

Test<=50
Pi<=10^5,1<=Q1<=10^9

br>
0<=beginlevel<=maxlevel

/*
这道题的60分暴力分还是很良心的。
观察题目给出的式子,我们可以发现phi(x)一定是偶数,则每次变换都会产生一些2,由此可以推断最后的答案就是2的个数。
我们设f(x)为最终答案,g(x)为x的分解过程中产生的2的个数则可以得到以下式子:
g(x)=f(x)+1 (x是奇数)
g(x)=f(x) (x是偶数)
g(x)=g(phi(x))+1
g(p^q)=q*g(p-1)
那么就可以利用线性筛来解决这个问题
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define N 100010
#define lon long long
using namespace std;
int mark[N],prime[N],num,phi[N],g[N];
void get_prime(){
phi[]=;
for(int i=;i<N;i++){
if(!mark[i]) prime[++num]=i,phi[i]=i-;
for(int j=;j<=num&&prime[j]*i<N;j++){
mark[i*prime[j]]=;
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for(int i=;i<N;i++) g[i]=g[phi[i]]+;
}
int main(){
get_prime();
int T;scanf("%c",&T);
while(T--){
int m,flag=;lon ans=;
scanf("%c",&m);
for(int i=;i<=m;i++){
int p,q;scanf("%c%c",&p,&q);
if(p==){
flag=;
ans+=(lon)q;
}
else ans+=(lon)q*(lon)g[p-];
}
if(!flag) ans++;
cout<<ans<<endl;
}
return ;
}

外星人(bzoj 2749)的更多相关文章

  1. Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 568  Solved: 302[Submit][Status][ ...

  2. 【BZOJ 2749】 2749: [HAOI2012]外星人 (数论-线性筛?类积性函数)

    2749: [HAOI2012]外星人 Description Input Output 输出test行,每行一个整数,表示答案. Sample Input 1 2 2 2 3 1 Sample Ou ...

  3. BZOJ 2749 HAOI 2012 外星人 数论 欧拉函数

    题意: 给出一个数,给出的形式是其分解质因数后,对应的质因数pi及其次数qi,问对这个数不停求phi,直至这个数变成1,需要多少次.(多组数据) 范围:pi <= 1e5,qi <= 1e ...

  4. bzoj 2749 - 外星人

    Description 给定一个数的标准分解\(N= \prod_{i=1}^n p_i^{q_i}\) 其中\(p_i \le 10^5, q_i \le 10^9\) 求最小的\(x\)使得\(\ ...

  5. BZOJ 2749 [HAOI2012]外星人

    题解:对每一个>2的质数分解,最后统计2的个数 注意:如果一开始没有2则ans需+1,因为第一次求phi的时候并没有消耗2 WA了好几遍 #include<iostream> #in ...

  6. bzoj 2749 杂题

    我们可以发现,phi(x)与x相比,相当于x的每个质因子-1后再分解质因数,添加到现有的质因子中,比如质因子13相当于将13变成12,然后分解成2*2*3,再将2的质数+2,3的指数+1,除了质因子2 ...

  7. 【bzoj2749】[HAOI2012]外星人

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 677  Solved: 360[Submit][Status][ ...

  8. 2749: [HAOI2012]外星人

    首先像我一样把柿子画出来或者看下hint 你就会发现其实是多了个p-1这样的东东 然后除非是2他们都是偶数,而2就直接到0了 算一下2出现的次数就好 #include<cstdio> #i ...

  9. BZOJ2749: [HAOI2012]外星人

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 377  Solved: 199[Submit][Status] ...

随机推荐

  1. 新手 WordPress主题制作全过程

    WordPress主题制作全过程(一):基础准备 前言: 我想大多数使用WordPress的朋友都喜欢去尝试新的主题,但是换来换去,总是找不到那么一款适合自己的,让人很郁闷.于是很多人萌生了修改现有主 ...

  2. iOS项目工程及目录结构

    做过一些iOS的项目,不同项目的沉淀没有积累到一起,目录的管理都在后期随着人员的增加越来越混乱,因此在这里做一些梳理,希望达到两个目的. 一套相对通用的目录结构,作为后续项目的模版. 积累相应的基础库 ...

  3. tensorflow目标检测API安装及测试

    1.环境安装配置 1.1 安装tensorflow 安装tensorflow不再仔细说明,但是版本一定要是1.9 1.2 下载Tensorflow object detection API  下载地址 ...

  4. 18.Yii2.0框架模型修改记录 和 修改点击量

    目录 修改数据 修改点击量 修改数据 上面要 use app\models\Article; //修改 //http://yii.com/?r=home/Edit public function ac ...

  5. Python爬虫,爬取实验楼全部课程

    目的: 使用requests库以及xpath解析进行实验楼所有课程,存入MySQL数据 库中. 准备工作: 首先安装,requests库,lxml库,以及peewee库.在命令行模式,使用以下命令. ...

  6. PTA 银行排队问题之单队列多窗口加VIP服务 队列+模拟

    假设银行有K个窗口提供服务,窗口前设一条黄线,所有顾客按到达时间在黄线后排成一条长龙.当有窗口空闲时,下一位顾客即去该窗口处理事务.当有多个窗口可选择时,假设顾客总是选择编号最小的窗口. 有些银行会给 ...

  7. Nordic Collegiate Programming Contest 2015​ E. Entertainment Box

    Ada, Bertrand and Charles often argue over which TV shows to watch, and to avoid some of their fight ...

  8. apache php 多站点配置 重新整理

    需要下载的东东:apache_2.0.59-win32-x86-no_ssl.msi  (服务器软件,用来编译PHP的) php-5.1.5-Win32.zip  (PHP的主文件) 第一步:1.安装 ...

  9. [git 学习篇]git管理的是修改,并非文件

    你会问,什么是修改?比如你新增了一行,这就是一个修改,删除了一行,也是一个修改,更改了某些字符,也是一个修改,删了一些又加了一些,也是一个修改,甚至创建一个新文件,也算一个修改. 为什么说Git管理的 ...

  10. [python篇][1]configparser 问题汇总

    https://wiki.python.org/moin/ConfigParserExamples 1 错误一 nicodeEncodeError: 'ascii' codec can't encod ...