Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3437    Accepted Submission(s): 1773

Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.

 
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).
 
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
 
Sample Output
12
2
0
 题意:01背包中所能获得的最大价值的第K大。
思路:设dp[j][k]为容量为j的背包所获得的第k大价值。在01背包中 状态转移方程为 dp[j]=max(dp[j],dp[j-w[i]])+v[i],这个求的是第1大。我们用dp[j][1...k]表示第1大到第k大。
那么dp[j][1]=max_1th(dp[j][1],dp[j-w[i]]+v[i]),dp[j][2]=max_2th(dp[j][1],dp[j-w[i]][1],dp[j][2],dp[j-w[i]][2]+v[i])( 注意:不是dp[j][2]=max(dp[j][2],dp[j-w[i][2]+v[i]) )
dp[j][k]=max_kth(dp[j][1],...,dp[j][k],dp[j-w[i]][1]+v[i],...,dp[j-w[i]][k]+v[i])。
/*
Accepted 2639 858MS 5372K 831 B G++
*/
#include"cstdio"
#include"cstring"
#include"algorithm"
using namespace std;
const int MAXN=;
int dp[MAXN][MAXN];
int n,W,K;
int v[MAXN],w[MAXN];
int vec[MAXN],cnt;
bool comp(int x,int y)
{
return x > y;
}
void KthZeroOnePack()
{
for(int i=;i<n;i++)
{
for(int j=W;j>=w[i];j--)
{
cnt=;
for(int th=;th<=K;th++)
{
vec[cnt++]=dp[j][th];
vec[cnt++]=dp[j-w[i]][th]+v[i];
}
sort(vec,vec+cnt,comp);
cnt=unique(vec,vec+cnt)-vec;
for(int th=;th<=min(cnt,K);th++) dp[j][th]=vec[th-];
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&W,&K);
memset(dp,,sizeof(dp));
for(int i=;i<n;i++) scanf("%d",&v[i]);
for(int i=;i<n;i++) scanf("%d",&w[i]);
KthZeroOnePack();
printf("%d\n",dp[W][K]);
}
return ;
}

上面用了STL里的sort函数速度较慢...

因为dp[j][1]...dp[j][k]与dp[j-w[i]][1]+v[i]...dp[j-w[i]][k]+v[i]是依次递减的,那么我们可以用两个数组将这两组数组保存起来,再O(N)的时间内求得第K大。

/*
Accepted 2639 171MS 5372K 966 B G++
*/
#include"cstdio"
#include"cstring"
#include"algorithm"
#include"queue"
using namespace std;
const int MAXN=;
int dp[MAXN][MAXN];
int n,W,K;
int v[MAXN],w[MAXN];
int s1[MAXN],s2[MAXN];
void KthZeroOnePack()
{
for(int i=;i<n;i++)
{
for(int j=W;j>=w[i];j--)
{
for(int th=;th<=K;th++)
{
s1[th-]=dp[j][th];
s2[th-]=dp[j-w[i]][th]+v[i];
}
s1[K]=s2[K]=-;
int cnt=;
int cnt1=,cnt2=;
while(cnt<=K&&(s1[cnt1]!=-||s2[cnt2]!=-))
{
if(s1[cnt1]>s2[cnt2]) dp[j][cnt]=s1[cnt1++];
else dp[j][cnt]=s2[cnt2++];
if(dp[j][cnt]!=dp[j][cnt-]) cnt++;
}
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&W,&K);
memset(dp,,sizeof(dp));
for(int i=;i<n;i++) scanf("%d",&v[i]);
for(int i=;i<n;i++) scanf("%d",&w[i]);
KthZeroOnePack();
printf("%d\n",dp[W][K]);
}
return ;
}

HDU2639(01背包第K大)的更多相关文章

  1. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  2. hdu 2639 Bone Collector II(01背包 第K大价值)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. HDU 2639(01背包第K大)

    http://acm.hdu.edu.cn/showproblem.php?pid=2639 http://blog.csdn.net/lulipeng_cpp/article/details/758 ...

  4. hdu2639 01背包第K优解

    #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #i ...

  5. HDU 2639 (01背包第k优解)

    /* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...

  6. HDU2639[背包第K大]

    题目链接[http://acm.hdu.edu.cn/showproblem.php?pid=2639] 题意:求第k大背包. 题解:利用二路归并的思想,求解第K大的值. #include<bi ...

  7. 杭电 2639 Bone Collector II【01背包第k优解】

    解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解, 即为取的是f[v],f[ ...

  8. Bone Collector II HDU - 2639 01背包第k最大值

    题意: 01背包,找出第k最优解 题解: 对于01背包最优解我们肯定都很熟悉 第k最优解的话也就是在dp方程上加一个维度来存它的第k最优解(dp[i][j]代表,体积为i能获得的第j最大价值) 对于每 ...

  9. HDU 3639 Bone Collector II(01背包第K优解)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. AngularJS的ng-repeat的内部变量

    代码下载:https://files.cnblogs.com/files/xiandedanteng/angularJSng-repeatInnerVariable.rar 代码: <!DOCT ...

  2. Android自己定义ViewGroup打造各种风格的SlidingMenu

    看鸿洋大大的QQ5.0側滑菜单的视频课程,对于側滑的时的动画效果的实现有了新的认识,似乎打通了任督二脉.眼下能够实现随意效果的側滑菜单了.感谢鸿洋大大!! 鸿洋大大用的是HorizontalScrol ...

  3. windows环境下生成ssh keys

    参考:https://www.cnblogs.com/achengmu/p/6095046.html 1.首先你要安装Git工具 2.运行Git Bash here 3.输入指令,进入.ssh文件夹 ...

  4. gulp(基础篇)

    今天在写项目的时候用到了gulp构建工具,虽然一年前就有用过,但是一直只存在于我的“有道云笔记”里,今天又一次用到,固然是巩固一下,这里来记录一下吧:这里我主要想要记录的就是初学者在第一次使用gulp ...

  5. [LeetCode]Insert Interval 考虑多种情况

    写太复杂了. 思想:确定带插入区间的每一个边界位于给定区间中的哪个位置,共同拥有5种情况 -1 |(0)_1_(2)|  (3) 当中.0,1,2这三种情况是一样的. 确定每一个带插入区间的两个边界分 ...

  6. shell脚本分析mysql慢查询日志(slow log)

    使用percona公司的pt-query-digest分析慢查询日志.分析.统计的结果的比較清晰 #!/bin/sh slowlog_path=/root/slow_query_log everysl ...

  7. man gitworkflows

    gitworkflows(7) Manual Page NAME gitworkflows - An overview of recommended workflows with Git SYNOPS ...

  8. 【Web探索之旅】第三部分第一课:server

    wx_fmt=jpeg" alt="0? wx_fmt=jpeg" style="height:auto"> 内容简单介绍 .第三部分第一课:s ...

  9. select version();desc mysql.user;

    D:\wamp64\wamp\bin\mysql\mysql5.6.17\bin>mysql -hgoDev -uroot -ppasswordWarning: Using a password ...

  10. 5 Ways to Make Your Hive Queries Run Faster

    5 Ways to Make Your Hive Queries Run Faster Technique #1: Use Tez  Hive can use the Apache Tez execu ...