BZOJ1297 [SCOI2009]迷路 【矩阵优化dp】
题目
windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
输入格式
第一行包含两个整数,N T。 接下来有 N 行,每行一个长度为 N 的字符串。 第i行第j列为'0'表示从节点i到节点j没有边。 为'1'到'9'表示从节点i到节点j需要耗费的时间。
输出格式
包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以2009的余数。
输入样例
5 30
12045
07105
47805
12024
12345
输出样例
852
提示
30%的数据,满足 2 <= N <= 5 ; 1 <= T <= 30 。 100%的数据,满足 2 <= N <= 10 ; 1 <= T <= 1000000000 。
题解
设\(f[i][t]\)表示\(t\)时刻到达\(i\)号点的方案数
那么有
\]
\(T\)很大,而且显然这是一个齐次式,考虑矩阵优化
但是矩阵优化只能一层层递推,这里边权的限制使我们可能跨多层
发现边权很小,考虑拆点
每个点拆成一长条链,分别管辖各种权值的出边
这样就可以矩阵优化了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 95,maxm = 100005,INF = 1000000000,P = 2009;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct Matrix{
int s[maxn][maxn],n,m;
Matrix(){n = m = 0; memset(s,0,sizeof(s));}
}F,A;
inline Matrix operator *(const Matrix& a,const Matrix& b){
Matrix ans;
if (a.m != b.n) return ans;
ans.n = a.n; ans.m = b.m;
for (int i = 1; i <= ans.n; i++)
for (int j = 1; j <= ans.m; j++)
for (int k = 1; k <= a.m; k++)
ans.s[i][j] = (ans.s[i][j] + a.s[i][k] * b.s[k][j] % P) % P;
return ans;
}
inline Matrix operator ^(Matrix a,int b){
Matrix ans; ans.n = ans.m = a.n;
REP(i,ans.n) ans.s[i][i] = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) ans = ans * a;
return ans;
}
int n,T;
char s[maxn];
int main(){
n = read(); T = read();
A.n = A.m = 9 * n;
REP(i,n){
scanf("%s",s + 1);
REP(j,n){
if (s[j] != '0'){
int d = s[j] - '0';
A.s[(j - 1) * 9 + 1][(i - 1) * 9 + d] = 1;
}
}
for (int j = 2; j <= 9; j++)
A.s[(i - 1) * 9 + j][(i - 1) * 9 + j - 1] = 1;
}
F.n = 9 * n; F.m = 1;
F.s[1][1] = 1;
Matrix Ans = (A^T) * F;
printf("%d\n",Ans.s[(n - 1) * 9 + 1][1]);
return 0;
}
BZOJ1297 [SCOI2009]迷路 【矩阵优化dp】的更多相关文章
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- 矩阵优化dp
链接:https://www.luogu.org/problemnew/show/P1939 题解: 矩阵优化dp模板题 搞清楚矩阵是怎么乘的构造一下矩阵就很简单了 代码: #include < ...
- bzoj 3120 矩阵优化DP
我的第一道需要程序建矩阵的矩阵优化DP. 题目可以将不同的p分开处理. 对于p==0 || p==1 直接是0或1 对于p>1,就要DP了.这里以p==3为例: 设dp[i][s1][s2][r ...
- HDU - 2294: Pendant(矩阵优化DP&前缀和)
On Saint Valentine's Day, Alex imagined to present a special pendant to his girl friend made by K ki ...
- [六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 993[Submit][Status] ...
随机推荐
- SubSonic框架使用图解
简介:SubSonic框架是一个优秀的.开源的ORM映射框架,同时提供符合自身需要的代码生成器. 官方下载地址:http://subsonicproject.com/Download 明白了SubSo ...
- Python列表解析与生成器表达式
Python列表解析 l = ["egg%s" %i for i in range(100) if i > 50] print(l) l= [1,2,3,4] s = 'he ...
- 树莓派 - 修改pi账号密码,开启root账号
1.修改PI账号的密码 password pi 2.开启root账号 树莓派使用的Linux是debian系统,所以树莓派启用root和debian是相同的. debian里root账户默认没有密码, ...
- IEDA的安装与破解
百度搜索IDEA 进入官网下载 https://www.jetbrains.com/idea/download/#section=windows 2.下载好双击即可 3. 完成破解
- Linux性能检测常用的10个基本命令
检测性能的10个命令汇总 uptim dmesg | tail vmstat 1 mpstat -P ALL 1 pidstat 1 iostat -xz 1 free -m sar -n DEV 1 ...
- NOIP模拟赛 抓牛
[题目描述] 农夫约翰被通知,他的一只奶牛逃逸了!所以他决定,马上出发,尽快把那只奶牛抓回来. 他们都站在数轴上.约翰在N(O≤N≤100000)处,奶牛在K(O≤K≤100000)处.约翰有两种办法 ...
- [CF] 180 E. Cubes
对同类元素双指针扫描 #include<iostream> #include<cstring> #include<cstdio> #include<vecto ...
- http 基础与通讯原理
目录 http 基础与通讯原理 Internet 与中国 1990年10月 注册CN顶级域名 1993年3月2日 接入第一根专线 1994年4月20日 实现与互联网的全功能连接 1994年5月21日 ...
- PHP将html内容转换为image图片
/** * 将html内容转换为image图片 * @param $htmlcontent * @param $toimagepath * @author james.ou 2011-11-1 */ ...
- static关键字所导致的内存泄漏问题
大家都知道内存泄漏和内存溢出是不一样的,内存泄漏所导致的越来越多的内存得不到回收的失手,最终就有可能导致内存溢出,下面说一下使用staitc属性所导致的内存泄漏的问题. 在dalvik虚拟机中,sta ...