刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)
题目:
Description
Input
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000
题解
设dp[i]为走到i位置的概率··容易得出dp方程f[i]=f[i-1]*p+f[]i-2]*[1-p],但题目中的路径长度太大··然而地雷数量却很少··因此我们可以将地雷与地雷间的路程分段··分段用矩阵快速幂来求
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
struct matrix
{
double a[][];
inline void I()
{
memset(a,,sizeof(a));
a[][]=a[][]=;
}
friend inline matrix operator *(matrix A,matrix B)
{
matrix temp;memset(temp.a,,sizeof(temp.a));
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<=;k++)
temp.a[i][j]+=A.a[i][k]*B.a[k][j];
return temp;
}
matrix Pw(int b)
{
matrix ans,A=*this;ans.I();
for(; b; b>>= , A=A*A)
if(b&) ans=ans*A;
return ans;
}
};
int pos[],n;
double p;
int main()
{
//freopen("a.in","r",stdin);
while(scanf("%d%lf",&n,&p)!=EOF)
{
for(int i=;i<=n;i++) scanf("%d",&pos[i]);
sort(pos+,pos+n+);
if(pos[]==)
{
cout<<"0.0000000"<<endl;continue;
}
matrix P,f;P.a[][]=,P.a[][]=-p,P.a[][]=,P.a[][]=p;
f.a[][]=,f.a[][]=;pos[]=;
for(int i=;i<=n;i++)
{
f=f*P.Pw(pos[i]-pos[i-]-);
f.a[][]=f.a[][];f.a[][]=;
}
f=f*P;
printf("%0.7f\n",f.a[][]);
}
return ;
}
刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)的更多相关文章
- poj 3744 矩阵快速幂+概率dp
题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...
- POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)
http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...
- 矩阵快速幂+概率DP poj 3744
题意:在一条不满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 【矩阵快速幂优化DP】【校内测试】
实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻. 构建矩阵什么的 ...
- 【20181019T2】硬币【矩阵快速幂优化DP】
题面 [错解] 哎\(N \leq 50\)?双向搜索? 切了切-- 等下,好像要求方案数-- 好像搜不了 哎他给\(V_{i} | V_{i+1}\)干嘛? 肯定有用啊 为了体现条件的用处,我在搜下 ...
- HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】
CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- POJ 2778 DNA Sequence ( AC自动机、Trie图、矩阵快速幂、DP )
题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个 分析 : 这题搞了我真特么久啊,首先你需要知道的前置技能包括 AC自动机.构建Trie图.矩阵快速幂,其中矩 ...
随机推荐
- 运维自动化之Cobbler系统安装详解
原文链接 参考文档 参考文档SA们现在都知道运维自动化的重要性,尤其是对于在服务器数量按几百台.几千台增加的公司而言,单单是装系统,如果不通过自动化来完成,根本是不可想象的. 运维自动化安装方面,早期 ...
- opencv anaconda
from: http://blog.csdn.net/fairylrt/article/details/43560525 Anaconda是一个python的一个包装,或者不单单是这样.你可以认为An ...
- 快速下载jar包
1, http://www.mvnrepository.com 2,可以从spring官网上下载,如果是mvn的话可以通过上面的网址下载
- STL之deque用法
deque:双端队列 底层是一个双向链表. 常用的有队列的尾部入队.首部出队. 普通队列:queuequeue 模板类的定义在<queue>头文件中.与stack 模板类很相似,queue ...
- PAT 乙级 1024
题目 题目地址:PAT 乙级 1024 题解 模拟题,重点需要考虑到各种不同情况:简单来说一下: 因为输入格式固定,所以把不同的部分分别存储和处理可以在很大程度上简化运算:其中需要考虑最多的就是小数部 ...
- nginx负载均衡集群(二)
nginx负载均衡配置实战 一.配置基于域名虚拟主机的web节点 web02和web01做同样的操作,nginx配置文件如下: [root@web01 conf]# cat nginx.conf wo ...
- Django2.1集成xadmin管理后台所遇到的错误集锦,解决填坑
django默认是有一个admin的后台管理模块,但是丑,功能也不齐全,但是大神给我们已经集成好了xadmin后台,我们拿来用即可,但是呢,django已经升级到2.1版本了,xadmin貌似跟不上节 ...
- 第11课 文章分类(组件化开发) Thinkphp5商城第四季
目录 思路: 控制器里 扩展类里: 视图层: 思路: 控制器查出所有数据后调用扩展类里的无限级分类 public function catetree($cateRes) 方法. 把排序好的数据传给视图 ...
- Android四大基本组件介绍及生命周期
Android四大基本组件分别是Activity,Service服务,Content Provider内容提供者,BroadcastReceiver广播接收器. 一.了解四大基本组件 Activity ...
- 100个经典C语言程序(益智类)
100个经典C语言程序(益智类) [1.绘制余弦曲线] 在屏幕上用“*”显示0~360度的余弦函数cos(x)曲线 [问题分析与算法设计] 利用cos(x)的左右对称性,将屏幕的行方向定义为x,列方向 ...