刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)
题目:
Description
Input
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000
题解
设dp[i]为走到i位置的概率··容易得出dp方程f[i]=f[i-1]*p+f[]i-2]*[1-p],但题目中的路径长度太大··然而地雷数量却很少··因此我们可以将地雷与地雷间的路程分段··分段用矩阵快速幂来求
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
struct matrix
{
double a[][];
inline void I()
{
memset(a,,sizeof(a));
a[][]=a[][]=;
}
friend inline matrix operator *(matrix A,matrix B)
{
matrix temp;memset(temp.a,,sizeof(temp.a));
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<=;k++)
temp.a[i][j]+=A.a[i][k]*B.a[k][j];
return temp;
}
matrix Pw(int b)
{
matrix ans,A=*this;ans.I();
for(; b; b>>= , A=A*A)
if(b&) ans=ans*A;
return ans;
}
};
int pos[],n;
double p;
int main()
{
//freopen("a.in","r",stdin);
while(scanf("%d%lf",&n,&p)!=EOF)
{
for(int i=;i<=n;i++) scanf("%d",&pos[i]);
sort(pos+,pos+n+);
if(pos[]==)
{
cout<<"0.0000000"<<endl;continue;
}
matrix P,f;P.a[][]=,P.a[][]=-p,P.a[][]=,P.a[][]=p;
f.a[][]=,f.a[][]=;pos[]=;
for(int i=;i<=n;i++)
{
f=f*P.Pw(pos[i]-pos[i-]-);
f.a[][]=f.a[][];f.a[][]=;
}
f=f*P;
printf("%0.7f\n",f.a[][]);
}
return ;
}
刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)的更多相关文章
- poj 3744 矩阵快速幂+概率dp
题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...
- POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)
http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...
- 矩阵快速幂+概率DP poj 3744
题意:在一条不满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 【矩阵快速幂优化DP】【校内测试】
实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻. 构建矩阵什么的 ...
- 【20181019T2】硬币【矩阵快速幂优化DP】
题面 [错解] 哎\(N \leq 50\)?双向搜索? 切了切-- 等下,好像要求方案数-- 好像搜不了 哎他给\(V_{i} | V_{i+1}\)干嘛? 肯定有用啊 为了体现条件的用处,我在搜下 ...
- HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】
CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- POJ 2778 DNA Sequence ( AC自动机、Trie图、矩阵快速幂、DP )
题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个 分析 : 这题搞了我真特么久啊,首先你需要知道的前置技能包括 AC自动机.构建Trie图.矩阵快速幂,其中矩 ...
随机推荐
- python_30_购物车复习
prodcut_list=[ ('Iphone', 5800), ('Mac Pro', 9800), ('Bike', 800), ('Watch', 10600), ('Coffee', 31), ...
- modprobe与insmod的区别
linux设备驱动有两种加载方式insmod和modprobe,下面谈谈它们用法上的区别1.insmod一次只能加载特定的一个设备驱动,且需要驱动的具体地址.写法为: insmod dr ...
- 前端开发APP,从HBuilder开始~
内容简介 介绍目前前端人员开发app的几种方法,具体介绍hbuilder开发app,一扇赞新的大门~ 无所不能的js 最开始js仅仅局限于网页上一些效果,操作网页内容等, 但是nodejs把js带入了 ...
- linux运维、架构之路-MySQL多实例
一.MySQL多实例介绍 一台服务器上开启多个不同的服务端口(3306,3307,3308),运行多个MySQL服务进程,共用一套MySQL安装程序,多实例MySQL在逻辑上看是 ...
- PHP 工厂模式介绍
工厂模式,顾名思义,如同工厂一样,你把原材料放入工厂中,出来的是成品,而你并不需要知道工厂里做了什么.代码中也类似,把主要参数放入一个工厂里,返回的是处理好的数据,我们并不需要工厂里做了什么,只需要知 ...
- PHP去掉字符串中的数字
这个比较简单,但是也有些需要注意的地方,先贴代码 $class=preg_replace("\\d+",'', $res); 需要使用preg_replace函数,但是只是这么写的 ...
- 利用Django提供的ModelForm增删改数据
上一篇我们写了Django基于类如何增删改数据的方法,方法虽然简单,但新手可能对其原理不是很清楚,那么我们这次就用Django提供的ModelForm方法来实现增删改数据,这是一种基于现有模型的增删改 ...
- JZOJ 3461. 【NOIP2013模拟联考5】小麦亩产一千八(kela)
3461. [NOIP2013模拟联考5]小麦亩产一千八(kela) (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Det ...
- Java基础知识:Collection接口
*本文是最近学习到的知识的记录以及分享,算不上原创. *参考文献见文末. 这篇文章主要讲的是java的Collection接口派生的两个子接口List和Set. 目录 Collection框架 Lis ...
- C#开发模式——dll多级引用的问题
C#解决方案里有两种引用方式,项目引用和dll物理文件引用. 一.项目引用 严格引用,项目文件需包含在解决方案里,好处是便于调试,可直接进入代码.缺点是耦合度太高(必须全部编译通过才能run起来),项 ...