基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题

这天,lyk又和gcd杠上了。
它拥有一个n个数的数列,它想实现两种操作。

1:将  ai 改为b。
2:给定一个数i,求所有 gcd(i,j)=1 时的  aj  的总和。

Input
第一行两个数n,Q(1<=n,Q<=100000)。
接下来一行n个数表示ai(1<=ai<=10^4)。
接下来Q行,每行先读入一个数A(1<=A<=2)。
若A=1,表示第一种操作,紧接着两个数i和b。(1<=i<=n,1<=b<=10^4)。
若B=2,表示第二种操作,紧接着一个数i。(1<=i<=n)。
Output
对于每个询问输出一行表示答案。
Input示例
5 3
1 2 3 4 5
2 4
1 3 1
2 4
Output示例
9
7
 #include<vector>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 100010
#define LL long long
vector<int>f[N],g[N];
int a[N],n,ques;
bool q[N];
long long sum[N];
void Prepare(){
int cnt=;
for(int i=;i<=n;i++){
if(!q[i])a[++cnt]=i;
for(int j=;j<=cnt;j++){
if(a[j]*i>n) break;
q[a[j]*i]=;
if(i % a[j] == ) break;
}
}
for(int i=;i<=cnt;i++){
for(int j=a[i];j<=n;j+=a[i]){
int w=f[j].size();
for(int k=;k<w;k++){
f[j].push_back(f[j][k]*a[i]);
g[j].push_back(g[j][k]+);
}
f[j].push_back(a[i]);
g[j].push_back();
}
}
}
int main()
{
LL ans;
scanf("%d%d",&n,&ques);
Prepare();
for(int i=;i<=n;i++){
scanf("%d",&a[i]);sum[]+=a[i];
for(int j=;j<f[i].size();j++)
sum[f[i][j]]+=a[i];
}
int x,pos,value;
while(ques--){
scanf("%d",&x);
if(x==){
scanf("%d%d",&pos,&value);
for(int i=;i<f[pos].size();i++)
sum[f[pos][i]]-=a[pos];
sum[]-=a[pos];a[pos]=value;sum[]+=a[pos];
for(int i=;i<f[pos].size();i++)
sum[f[pos][i]]+=a[pos];
}
else{
ans=sum[];
scanf("%d",&pos);
for(int i=;i<f[pos].size();i++)
if(g[pos][i] & )ans-=sum[f[pos][i]];
else ans+=sum[f[pos][i]]; printf("%lld\n",ans);
}
}
return ;
}

比较基础的容斥题,我们预处理出每个i的所有素因子的组合,比如6={2,3,6},那么我们对于a[6]将它加入到sum[2],sum[3],sum[6]中,统计答案时用容斥思想加加减减就行了。

 

51 Nod 1678 lyk与gcd的更多相关文章

  1. 51 Nod 1678 lyk与gcd(容斥原理)

    1678 lyk与gcd  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作 ...

  2. 1678 lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai 改为b.2:给定一个数i,求所有 ...

  3. 51nod 1678 lyk与gcd | 容斥原理

    51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...

  4. [51nod]1678 lyk与gcd(莫比乌斯反演)

    题面 传送门 题解 和这题差不多 //minamoto #include<bits/stdc++.h> #define R register #define pb push_back #d ...

  5. 51nod lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai  ...

  6. 51nod1678 lyk与gcd

    容斥定理所以可以用莫比乌斯函数来搞.逆向思维答案等于总和减去和他互质的.那么设f[i]=∑a[j] i|j.ans[i]=sum- ∑mo[j]*f[j] 跟bzoj2440那道题挺像的都是利用莫比乌 ...

  7. 51 nod 1439 互质对(Moblus容斥)

    1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...

  8. 51 nod 1610 路径计数(Moblus+dp)

    1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一 ...

  9. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

随机推荐

  1. leetcode笔记(一)309. Best Time to Buy and Sell Stock with Cooldown

    题目描述 (原题目链接) Say you have an array for which the ith element is the price of a given stock on day i. ...

  2. MySQL - CASE WHEN ... THEN ... ELSE ... END语句

    范例: CASE WHEN p.allow_over = 1 THEN p.allow_over_capital ELSE 0 END

  3. 一、Linux 安装

    Linux 安装 本章节我们将为大家介绍Linux的安装. 本章节以 centos6.4 为例. centos 下载地址: 可以去官网下载最新版本:https://www.centos.org/dow ...

  4. vue.js 二 路由懒加载

    当项目小的时候,我没考虑要去找这个得解决方案,也幸好现在几乎能迁移的项目都整合在了一个vue的项目里面 才发现编译后的vendor.js变得异常的大,而且几乎在项目每一个页面都需要加载这一个js,项目 ...

  5. Android Studio 3.0 安装注意点

    在安装Android studio 3.0+ 时候,会遇到默认不带Android SDK 的问题. 在启动Android studio 后,会提示让选择SDK目录,选择下载目录,对应的去下载 那么问题 ...

  6. 力扣题目汇总(丑数,重复N的元素,求众数)

    丑数 1.题目描述 编写一个程序判断给定的数是否为丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例 1: 输入: 6 输出: true 解释: 6 = 2 × 3 示例 2: 输入: 8 ...

  7. java 调用第三方系统时的连接代码-记录

    前言:该文章主要是总结我在实际工作中遇到的问题,在调取第三方系统的时候出现的问题,算自己的总结.各位博友如果有什么建议或意见欢迎留言指正. 先将准备传入参数 再与第三方系统建立连接 再第三方系统处理后 ...

  8. 【Todo】 cygwin下emacs中M-x shell 中出现乱码

  9. Kali 中文家目录改英文目录

    中文版Kali装好之后,家目录会中文显示,不便操作 root@kali:~# ls -l drwxr-xr-x root root .0K 7月 : 公共 drwxr-xr-x root root . ...

  10. TCP/IP网络编程之多种I/O函数

    send和recv函数 在之前的学习中,我们在不少示例中用到send和recv这两个函数,但一直没有详细解释过着两个函数中每个参数的含义.本节将介绍Linux平台下的send&recv函数 # ...