基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题

这天,lyk又和gcd杠上了。
它拥有一个n个数的数列,它想实现两种操作。

1:将  ai 改为b。
2:给定一个数i,求所有 gcd(i,j)=1 时的  aj  的总和。

Input
第一行两个数n,Q(1<=n,Q<=100000)。
接下来一行n个数表示ai(1<=ai<=10^4)。
接下来Q行,每行先读入一个数A(1<=A<=2)。
若A=1,表示第一种操作,紧接着两个数i和b。(1<=i<=n,1<=b<=10^4)。
若B=2,表示第二种操作,紧接着一个数i。(1<=i<=n)。
Output
对于每个询问输出一行表示答案。
Input示例
5 3
1 2 3 4 5
2 4
1 3 1
2 4
Output示例
9
7
 #include<vector>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 100010
#define LL long long
vector<int>f[N],g[N];
int a[N],n,ques;
bool q[N];
long long sum[N];
void Prepare(){
int cnt=;
for(int i=;i<=n;i++){
if(!q[i])a[++cnt]=i;
for(int j=;j<=cnt;j++){
if(a[j]*i>n) break;
q[a[j]*i]=;
if(i % a[j] == ) break;
}
}
for(int i=;i<=cnt;i++){
for(int j=a[i];j<=n;j+=a[i]){
int w=f[j].size();
for(int k=;k<w;k++){
f[j].push_back(f[j][k]*a[i]);
g[j].push_back(g[j][k]+);
}
f[j].push_back(a[i]);
g[j].push_back();
}
}
}
int main()
{
LL ans;
scanf("%d%d",&n,&ques);
Prepare();
for(int i=;i<=n;i++){
scanf("%d",&a[i]);sum[]+=a[i];
for(int j=;j<f[i].size();j++)
sum[f[i][j]]+=a[i];
}
int x,pos,value;
while(ques--){
scanf("%d",&x);
if(x==){
scanf("%d%d",&pos,&value);
for(int i=;i<f[pos].size();i++)
sum[f[pos][i]]-=a[pos];
sum[]-=a[pos];a[pos]=value;sum[]+=a[pos];
for(int i=;i<f[pos].size();i++)
sum[f[pos][i]]+=a[pos];
}
else{
ans=sum[];
scanf("%d",&pos);
for(int i=;i<f[pos].size();i++)
if(g[pos][i] & )ans-=sum[f[pos][i]];
else ans+=sum[f[pos][i]]; printf("%lld\n",ans);
}
}
return ;
}

比较基础的容斥题,我们预处理出每个i的所有素因子的组合,比如6={2,3,6},那么我们对于a[6]将它加入到sum[2],sum[3],sum[6]中,统计答案时用容斥思想加加减减就行了。

 

51 Nod 1678 lyk与gcd的更多相关文章

  1. 51 Nod 1678 lyk与gcd(容斥原理)

    1678 lyk与gcd  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作 ...

  2. 1678 lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai 改为b.2:给定一个数i,求所有 ...

  3. 51nod 1678 lyk与gcd | 容斥原理

    51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...

  4. [51nod]1678 lyk与gcd(莫比乌斯反演)

    题面 传送门 题解 和这题差不多 //minamoto #include<bits/stdc++.h> #define R register #define pb push_back #d ...

  5. 51nod lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai  ...

  6. 51nod1678 lyk与gcd

    容斥定理所以可以用莫比乌斯函数来搞.逆向思维答案等于总和减去和他互质的.那么设f[i]=∑a[j] i|j.ans[i]=sum- ∑mo[j]*f[j] 跟bzoj2440那道题挺像的都是利用莫比乌 ...

  7. 51 nod 1439 互质对(Moblus容斥)

    1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...

  8. 51 nod 1610 路径计数(Moblus+dp)

    1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一 ...

  9. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

随机推荐

  1. 洛谷P1048采药

    这道题一看就知道是01背包,我门用f[i]来表示时间剩余i时的最大的价值 一共只有两种选择取或者不取,可以得到方程式f[i]=max(f[i],f[i-a[i]]+v[i])(a[i]是表示时间,v[ ...

  2. Mysql操作方法类

    帮助类: using System; using System.Collections.Generic; using System.Data; using System.Linq; using Sys ...

  3. 学习Pytbon第三天,用户输入

    _username ='dream' #定义用户名 _password ='dream123'#定义用户密码username = input("username:")#请输入用户名 ...

  4. linux安装vmware出现kernel-header问题

    查看日志文件, cat /tmp/vmware-xiuyuan/vmware-modconfig-9996.log | more在日志文件中有这么几行:Setting header path for ...

  5. A Bug's Life POJ - 2492 (带权并查集)

    A Bug's Life POJ - 2492 Background Professor Hopper is researching the sexual behavior of a rare spe ...

  6. hihocoder 1097 最小生成树一·Prim算法

    #1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可 ...

  7. 【Akroma, Angel of Fury】完成svn环境搭建

    昨天的那篇博文恰恰是实验室所干的事儿 但是那是一种很投机取巧的方式完成的多project管理方式 来看看我建立环境的方法 首先,找一个比较闲的公用服务器(为什么不用自己的?有公共资源不用,你傻啊?), ...

  8. Codeforces:68A-Irrational problem(暴力大法好)

    A- Irrational problem p Time Limit: 2000MS Memory Limit: 262144K 64bit IO Format: %I64d& %I64 De ...

  9. 51nod 1554 KMP思维题

    题目为中文,因而不再解释题意. 首先遵循如下设定可以有以下几个结论:1,首先谈论下KMP的一个特殊性质:对于某一个特立独行的字符串:例如ABCDEF,在建立有限状态自动机之后,都会有,所有元素的失配边 ...

  10. spring整合mybatis详解

    在上篇螃蟹已经说明spring注解的最经典配置,接下来开始整合mybatis,这样整个项目就相对完整了. 有关本实例的源码可以到 <spring MVC注解实例及说明文档> 下载. 如需转 ...