One Person Game


Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge


There is a very simple and interesting one-person game. You have 3 dice, namely Die1Die2 and Die3Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces.
All the dice are fair dice, so the probability of rolling each value, 1 to K1K2K3 is exactly 1 / K1, 1 / K2 and
1 / K3. You have a counter, and the game is played as follow:

  1. Set the counter to 0 at first.
  2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the
    up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
  3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

Calculate the expectation of the number of times that you cast dice before the end of the game.

Input

There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases
follow. Each test case is a line contains 7 non-negative integers nK1K2K3abc (0
<= n <= 500, 1 < K1K2K3 <= 6, 1 <= a <= K1,
1 <= b <= K2, 1 <= c <= K3).

Output

For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

Sample Input

2
0 2 2 2 1 1 1
0 6 6 6 1 1 1

Sample Output

1.142857142857143
1.004651162790698
 
题目大意:给出了k1,k2,k3三个筛子。当k1 == a k2 == b k3 == c时分数归零,否则累加,问当总和到n以上须要的次数期望
状态方程非常好写。dp[i]代表由i到n以上须要的次数,dp[i] = ∑(p[j]*dp[i+j])+q*dp[0] + 1。p[j]代表掷出和为j的概率,q为归零的概率。可是为问题出现了,在状态方程中有dp[0]这是我们要求解的值。所以要带入系数dpa[],dpb[],dp[i] = dpa[i] + dpb[i]*dp[0] ;
最后求解出dp[0] = dpa[0] + dpb[0]*dp[0],能够解除dp[0];
dp[i] = dpa[i] + dpb[i]*dp[0] = ∑(p[j]*dp[i+j])+ q*dp[0]+1;
得到dpa[i] = ∑( p[j]*dpa[i+j] ) + 1 ;   dpb[i] = ∑( p[j]*dpb[i+j] ) + q ;
 
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
double p[20] , q , cnt ;
double dpa[600] , dpb[600] ;
int main()
{
int t , n , m , i , j , k , l , k1 , k2 , k3 , a , b , c ;
scanf("%d", &t);
while(t--)
{
scanf("%d %d %d %d %d %d %d", &n, &k1, &k2, &k3, &a, &b, &c);
memset(p,0,sizeof(p));
memset(dpa,0,sizeof(dpa));
memset(dpb,0,sizeof(dpb));
p[a+b+c] = -1 ;
cnt = 0 ;
m = k1 + k2 + k3 ;
for(i = 1 ; i <= k1 ; i++)
for(j = 1 ; j <= k2 ; j++)
for(k = 1 ; k <= k3 ; k++)
{
p[i+j+k] += 1.0 ;
cnt += 1.0 ;
}
for(i = 3; i <= m ; i++)
p[i] /= cnt ;
q = 1.0 / cnt ;
for(i = n ; i >= 0 ; i--)
{
dpa[i] = 1.0 ; dpb[i] = q ;
for(j = 3 ; j <= k1+k2+k3 ; j++)
{
dpa[i] += p[j]*dpa[i+j] ;
dpb[i] += p[j]*dpb[i+j] ;
}
}
printf("%.10lf\n", dpa[0]/(1-dpb[0]));
}
return 0;
}

zoj3329--One Person Game(概率dp第六弹:形成环的dp,带入系数,高斯消元)的更多相关文章

  1. 2014多校第一场J题 || HDU 4870 Rating(DP || 高斯消元)

    题目链接 题意 :小女孩注册了两个比赛的帐号,初始分值都为0,每做一次比赛如果排名在前两百名,rating涨50,否则降100,告诉你她每次比赛在前两百名的概率p,如果她每次做题都用两个账号中分数低的 ...

  2. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  3. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  4. BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]

    3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...

  5. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  6. BZOJ 3270: 博物馆 [概率DP 高斯消元]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...

  7. BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

    BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...

  8. LightOJ 1151 Snakes and Ladders(概率DP + 高斯消元)

    题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且 ...

  9. 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1170  Solved: 683 Description ...

  10. BZOJ3270: 博物馆【概率DP】【高斯消元】

    Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一 ...

随机推荐

  1. linux系统mysql连接检查脚本

    为了便于检查ECS服务器内部搭建的mysql或者RDS的mysql数据库,编写了一个mysql测试脚本,对于不熟悉命令行操作的朋友出现问题时可以检测一下.       脚本下载地址: http://j ...

  2. Log4j官方文档翻译(一、基本介绍)

    简介 log4j是使用java语言编写的可靠的.快速的.灵活的日志框架,它是基于Apache的license. log4j支持c,c++,c#,perl,python,ruby等语言.在运行时通过额外 ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

  4. java _tomcat_mysql 部署

    项目做完了,要发布了,而Java的特长之一就是移植性好,面对着微软的XP的停止服务,Windows系统的“独裁”,越来越多的商家选择了开源的免费的linux系统作为服务器.因为linux系统也有图形界 ...

  5. 【SPOJ694】Distinct Substrings (SA)

    求不相同子串个数    该问题等价于求所有后缀间不相同前缀的个数..也就是对于每个后缀suffix(sa[i]),将贡献出n-sa[i]+1个,但同时,要减去那些重复的,即为height[i],故答案 ...

  6. 笔记:CS231n+assignment1(作业一)

    CS231n的课后作业非常的好,这里记录一下自己对作业一些笔记. 一.第一个是KNN的代码,这里的trick是计算距离的三种方法,核心的话还是python和machine learning中非常实用的 ...

  7. 粟粟的书架(bzoj 1926)

    Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Co rmen 的文章.粟粟家中有一个 R行C 列的巨型书架, ...

  8. ConcurrentHashMap 1.8为什么要使用CAS+Synchronized取代Segment+ReentrantLock

    大家应该都知道ConcurrentHashMap在1.8的时候有了很大的改动,当然,我这里要说的改动不是指链表长度大于8就转为红黑树这种常识,我要说的是ConcurrentHashMap在1.8为什么 ...

  9. js动态添加select菜单 联动菜单

    原文发布时间为:2009-11-14 -- 来源于本人的百度文章 [由搬家工具导入] <html> <head> <title>http://hi.baidu.co ...

  10. MSClass (Class Of Marquee Scroll通用不间断滚动JS封装类) Ver 1.65

    原文发布时间为:2010-02-07 -- 来源于本人的百度文章 [由搬家工具导入] http://www.popub.net/script/MSClass.html/*MSClass (Class ...