bzoj 4827 [Hnoi2017] 礼物 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827
首先,旋转对应,可以把 b 序列扩展成2倍,则 a 序列对应到的还是一段区间;
再把 a 序列翻转,就成了卷积的形式;
如果 b 从 k 位置断开,则值为 ∑(0<=i<=n) (a[n-i] - b[k+i] + c)2
拆开求即可,注意 c 的取值是个二次函数,最低点左右两个整数值都要试一下;
如果一开始把 n-- 了,别忘了计算时带入 n+1 !
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);
db const Pi=acos(-1.0);
int n,m,lim,rev[xn],af,bf,as,bs;
struct com{db x,y;}a[xn],b[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
}
int main()
{
n=rd(); m=rd(); n--;
for(int i=,x;i<=n;i++)x=rd(),as+=x,af+=x*x,a[n-i].x=x;//
for(int i=,x;i<=n;i++)x=rd(),bs+=x,bf+=x*x,b[i].x=b[i+n+].x=x;
lim=; int l=;
while(lim<=n+*n+)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
fft(a,); fft(b,);
for(int i=;i<lim;i++)a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<=lim;i++)a[i].x=(int)(a[i].x/lim+0.5);
int ans=1e9,c,t;
c=floor(1.0*(bs-as)/(n+)); t=(n+)*c*c+*(as-bs)*c;//n--!
c++; t=min(t,(n+)*c*c+*(as-bs)*c);
t=af+bf+t;
for(int k=;k<=n;k++)ans=min(ans,t-*(int)a[n+k].x);
printf("%d\n",ans);
return ;
}
bzoj 4827 [Hnoi2017] 礼物 —— FFT的更多相关文章
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- bzoj 4827 [Hnoi2017]礼物——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 式子就是 \sum_{i=0}^{n-1}(a[ i ] - b[ i+k ] + c ...
- BZOJ 4827 [Hnoi2017]礼物 ——FFT
题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了. 然后考虑计算的式子,可以分成两个部分分开计算. 前半部分FFT,后半部分扫一遍. #include <map> #incl ...
- bzoj 4827: [HNOI2017]礼物 (FFT)
一道FFT 然而据说暴力可以水70分 然而我省选的时候看到了直接吓傻了 连暴力都没打 太弱了啊QAQ emmmm 详细的拆开就看其他题解吧233 最后那一步卷积其实我一直没明白 后来画画图终于懂了 ...
- bzoj 4827: [Hnoi2017]礼物【FFT】
记得FFT要开大数组!!开到快MLE的那种!!我这个就是例子TAT,5e5都RE了 在这题上花的时间太多了,还是FFT不太熟练. 首先看70分的n方做法:从0下标开始存,先n--,把a数组倍增,然后枚 ...
- 【刷题】BZOJ 4827 [Hnoi2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- BZOJ 4827: [Hnoi2017]礼物 FFT_多项式_卷积
题解稍后在笔记本中更新 Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r&q ...
- BZOJ:4827: [Hnoi2017]礼物
[问题描述] 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的 ...
- 4827: [Hnoi2017]礼物
4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...
随机推荐
- HDU 1253:胜利大逃亡(简单三维BFS)
pid=1253">胜利大逃亡 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...
- Linq实现SQL in
比如 Id in (1,2,3) int[] a={1,2,3}; list.Where(x=>a.Contains(x.Id))
- java模拟而一个电话本操作
哈哈.大家平时都在使用电话本.以下使用java来模拟而一个简单的电话本吧... 首先给出联系人的抽象类 package net.itaem.po; /** * * 电话人的信息 * */ public ...
- kubernetes之故障排查和节点维护(二)
系列目录 案例现场: 测试环境集群本来正常,突然间歇性地出现服务不能正常访问,过一会儿刷新页面又可以正常访问了.进入到服务所在的pod查看输出日志并没有发现异常.使用kubectl get node命 ...
- poj 3233 Matrix Power Series(矩阵二分,高速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15739 Accepted: ...
- Android自动折行TextView Group
package com.test.testview; import java.util.ArrayList; import android.content.Context; import androi ...
- Struts2中的数据类型转换
Struts2对数据的类型转换 一.Struts2中自带类型转换拦截器 Struts2内部提供了大量转换器,用来完成数据类型转换的问题,有如下 * boolean 和 Boolean * char和 ...
- 小程序 富文本 的页面展示 json 数据处理 go-echo 为小程序提供feed流服务
go生成页面 返回给web-view {{define "DBHtmlCode"}} <!DOCTYPE html> <html lang="zh-cm ...
- android DownloadManager.getInputStream返回null的一种情况
将下载操作的代码放到一个新的子线程中来执行.
- java之折半查找
//功能:二分查找import java.util.*; public class Demo1 { public static void main(String[] args) { int arr[] ...