题目

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.

Example:

Given nums = [1, 3, 5]

sumRange(0, 2) -> 9

update(1, 2)

sumRange(0, 2) -> 8

Note:

The array is only modifiable by the update function.

You may assume the number of calls to update and sumRange function is distributed evenly.

分析

一个可变数组数据结构的实现,包含更新数组元素和求部分和两个函数。

乍一看好像一个很简单的题目,很容易便可以 根据下标O(1)更新元素,由遍历操作O(n)实现求和;但是得到TLE的提交反馈也应该在意料之中。

查阅资料,发现一个树状数组的解法,给出参考博客:网址

树状数组是一种用于通过辅助数组和位置算法实现动态管理部分和的一种算法,其核心函数为lowbit、add、sum,当我们需要加入一个元素时,使用add函数向某个位置注入值,当需要求0~某位置的和时,调用sum函数传入这个位置即可:

 int lowbit(int pos){
return pos&(-pos);
}
void add(int pos, int value){
while(pos < c.size()){
c[pos] += value;
pos += lowbit(pos);
}
}
int sum(int pos){
int res = 0;
while(pos > 0){
res += c[pos];
pos -= lowbit(pos);
}
return res;
}

其中c就是辅助数组。需要注意的是树状数组的索引必须从1开始,因此在与题目的输入量相转化时,需要把索引+1作为树状数组的索引。

假设我们有数组arr:{1,2,3},要求部分和,我们先把这些值通过add注入树状数组,一定要注意索引+1.

for(int i = 0; i < 3; i++){
add(i+1,arr[i]); // 把arr[i]添加到树状数组的i+1位置
}

操作完成后,树状数组就建立好了,下面就可以利用sum来求和了。例如我们需要arr中索引0~2的和,那么使用sum(3)即可,如果要求1~2的和,可以用sum(3)-sum(0),注意到,sum(0)对于树状数组是一个非法索引,但是通过观察sum函数发现pos=0正好返回0,也就是到这个位置的和为0,满足要求,不必特殊处理。

综上所述,要求arr中i~j的部分和,使用sum(j+1)-sum(i)即可。

值的更新问题,题目要求使用update函数更新arr中位置i的值为val,这就要利用add函数来实现,注意add函数是在位置pos上追加一个值value,而不是覆盖,因此我们需要计算值的变化量,把它追加到相应位置,并且一定要记得更新arr,否则下次得到的变化量是错误的。

void update(int i, int val) {
int ori = m_nums[i]; // m_nums是拷贝arr数组所得的成员变量
int delta = val - ori;
m_nums[i] = val;
add(i+1,delta);
}

所谓树状数组也是第一次了解到,还需查阅资料深入学习一下。

AC代码

//普通方法实现
class NumArray1 {
public:
NumArray1(vector<int> &nums) {
array = vector<int>(nums.begin(), nums.end());
int len = array.size(), tmpSum = 0;
for (int i = 0; i < len; ++i)
{
tmpSum += array[i];
allSum.push_back(tmpSum);
}//for
} void update(int i, int val) {
if (i < 0 || i >= array.size())
return;
int tmp = val - array[i];
array[i] = val;
for (; i < array.size(); ++i)
allSum[i] += tmp;
} int sumRange(int i, int j) {
if (i < 0 || i >= array.size() || j<0 || j >= array.size() || i>j)
return 0;
if (0 == i)
return allSum[j];
else
return allSum[j] - allSum[i - 1];
} private:
vector<int> array;
vector<int> allSum;
}; //树状数组实现
class NumArray {
private:
vector<int> c;
vector<int> m_nums;
public:
NumArray(vector<int> &nums) {
c.resize(nums.size() + 1);
m_nums = nums;
for (int i = 0; i < nums.size(); i++){
add(i + 1, nums[i]);
}
} int lowbit(int pos){
return pos&(-pos);
} void add(int pos, int value){
while (pos < c.size()){
c[pos] += value;
pos += lowbit(pos);
}
}
int sum(int pos){
int res = 0;
while (pos > 0){
res += c[pos];
pos -= lowbit(pos);
}
return res;
} void update(int i, int val) {
int ori = m_nums[i];
int delta = val - ori;
m_nums[i] = val;
add(i + 1, delta);
} int sumRange(int i, int j) {
return sum(j + 1) - sum(i);
}
};

GitHub测试程序源码

LeetCode(307) Range Sum Query - Mutable的更多相关文章

  1. LeetCode(304)Range Sum Query 2D - Immutable

    题目 Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  2. LeetCode(303)Range Sum Query - Immutable

    题目 Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclus ...

  3. 【刷题-LeetCode】307. Range Sum Query - Mutable

    Range Sum Query - Mutable Given an integer array nums, find the sum of the elements between indices ...

  4. [Leetcode Week16]Range Sum Query - Mutable

    Range Sum Query - Mutable 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/range-sum-query-mutable/de ...

  5. LeetCode(113) Path Sum II

    题目 Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given ...

  6. [LeetCode] 307. Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  7. [LeetCode] Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  8. leetcode笔记:Range Sum Query - Mutable

    一. 题目描写叙述 Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), ...

  9. Leetcode 2——Range Sum Query - Mutable(树状数组实现)

    Problem: Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), ...

随机推荐

  1. cas 单点登录服务端客户端配置

    首先,下载 cas-server-3.5.2-release http://pan.baidu.com/s/1GJ8Gs cas-client-3.2.1-release http://pan.bai ...

  2. .net笔试题二(填空题、选择题)

    1.面向对象的语言具有_______性.________性._______性答:封装.继承.多态. 2.能用foreach遍历访问的对象需要实现 ____________接口或声明__________ ...

  3. AngularJS(三):重复HTML元素、数据绑定

    本文也同步发表在我的公众号“我的天空” 重复HTML元素 在前端的页面编写中,我们会经常遇到重复HTML元素,譬如绘制表格.菜单等,如以下代码显示一个简单的li列表: <body>    ...

  4. java 实现 excel sheet 拷贝到另一个Excel文件中 poi

    public class CopyExcelSheetToAnotherExcelSheet { public static void main(String[] args) throws FileN ...

  5. java 通过文件后缀名查找文件

    最近开发项目的时候需要过滤出一些指定的文件,所以有了以下的一些代码: /** **该类主要是过滤得到指定后缀名的文件 **/ public class DataFileFilter implement ...

  6. ionic 2 起航 控件的使用 客户列表场景(四)

    接下来,我们的客户列表要怎么刷新数据呢? 我们不会安卓开发,不会ios开发,没关系,我们还有ionic 2.ionic 2的控件 Ion-refresher 轻松帮我们搞掂. <!--下拉刷新- ...

  7. 重写strcat函数,以实现strcat的功能

    char * strcatTest(char *dst,const char *src);Action(){ char a[]="come on"; char b[]=" ...

  8. Postgres 9.11 网络地址类型函数和操作符

    9.11. 网络地址类型函数和操作符 Table 9-31 显示了可以用于 cidr 和 inet 的操作符. 操作符 <<,<<= >>,和 >>= ...

  9. 一把剪刀看懂git reset 和它的三个参数

    都说git 命令难记且难懂,但是如果从立体的角度看待git与git管理的版本,那么一切都会明朗许多. 大多数的学习教程为了理解git,会绘制几个圆圈的串联,每个圆圈代表一个commit的版本,也就是从 ...

  10. UVA12904 Load Balancing(中途相遇法)

    虽然这题可以用暴力n^3过,但是还有有种n^2的方法的,枚举b,对于b,分别枚举a和c,得到对于这个b的最优解,然后从所以b中选一个最优的. 要保证字典序最小,只要从小往大枚举就好了 感谢moonfl ...