Luogu 2216 [HAOI2007]理想的正方形 (单调队列优化)
题意:
给出一个 N×M 的矩阵,以及一个数值 K ,求在给定的矩阵中取出一个 K×K 的矩阵其中最大值减去最小值的最小值。
细节:
没有细节来发暴力走天下,20分也是分啊~~~ QAQ。
分析:
感觉是一题裸体,大佬们看了一定秒切,但是本蒟蒻显然不会,二维不易可以先尝试如何求解在 1×K 的矩阵中求解答案呢,显然是利用一个数组 Max1[i][j] 表示第 i 行区间 [ j , j + K - 1] 的最大值,Min1[i][j] 表示第 i 行区间 [ j , j + K - 1] 的最小值,每行利用一个单调队列进行定区间求最值的操作,最后 O(N×M) 的枚举所有的 1×K 的矩阵,求解最小值即可。
好吧此时你应该豁然开朗,这(TM <- 希望忽略这个东西)就是将一维的数组在进行一次求解,得到二维数组的最值即可,仍然利用一个数组 Max2[i][j] 表示纵向区间 [i , i + K - 1]、横向区间 [j , j + K - 1]中的最大值,Min2[i][j] 表示纵向区间 [i , i + K - 1]、横向区间 [j , j + K - 1]中的最小值,只需要对上面一步操作的中的 Max1[][]、Min1[][]数组,每列利用一个单调队列进行定区间求最值,同样是 O(N×M) 的时间复杂度处理出了所有 K×K 的矩阵,最后只需要统计答案所指向的最优值即可。
实际上本题也是含有少许 Dp 的思想,将大多的重复与不必要同过单调队列的思想进行了优化,这应该是一道不错的练手的模板题。
代码:
#include<cstdio>
#include<iostream>
using namespace std;
int n,m,k,front,FRONT,back,BACK,ans;
int a[][],q[],Q[],x[][],X[][],y[][],Y[][];
int main()
{
scanf("%d%d%d",&n,&m,&k);
for (int I=;I<=n;I++)
for (int i=;i<=m;i++)
scanf("%d",&a[I][i]);
for (int I=;I<=n;I++){
FRONT=BACK=front=back=Q[]=q[]=;
for (int i=;i<=m;i++){
while (a[I][i]>=a[I][Q[BACK]]&&FRONT<=BACK) BACK--;
while (a[I][i]<=a[I][q[back]]&&front<=back) back--;
BACK++;back++;Q[BACK]=i;q[back]=i;
while (i-Q[FRONT]>=k) FRONT++;
while (i-q[front]>=k) front++;
if (i>=k) X[I][i-k+]=a[I][Q[FRONT]],x[I][i-k+]=a[I][q[front]];
}
}
for (int I=;I<=m-k+;I++){
FRONT=BACK=front=back=Q[]=q[]=;
for (int i=;i<=n;i++){
while (X[i][I]>=X[Q[BACK]][I]&&FRONT<=BACK) BACK--;
while (x[i][I]<=x[q[back]][I]&&front<=back) back--;
BACK++;back++;Q[BACK]=i;q[back]=i;
while (i-Q[FRONT]>=k) FRONT++;
while (i-q[front]>=k) front++;
if (i>=k) Y[i-k+][I]=X[Q[FRONT]][I],y[i-k+][I]=x[q[front]][I];
}
}
ans=0x3f3f3f3f;
for (int I=;I<=n-k+;I++)
for (int i=;i<=m-k+;i++) ans=min(ans,Y[I][i]-y[I][i]);
printf("%d\n",ans);
return ;
}
咳咳,此代码代码风格奇异,可能不是原创,请各位阅读者谅解…… QWQ。
Luogu 2216 [HAOI2007]理想的正方形 (单调队列优化)的更多相关文章
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- [Luogu 2216] [HAOI2007]理想的正方形
[Luogu 2216] [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...
- [HAOI2007] 理想的正方形 (单调队列)
题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...
随机推荐
- Codeforces Round #542(Div. 2) B.Two Cakes
链接:https://codeforces.com/contest/1130/problem/B 题意: 给定n和 2 * n个数,表示i位置卖ai层蛋糕, 有两个人在1号,必须严格按照1-n的顺序买 ...
- UVA-11584:Partitioning by Palindromes(基础DP)
今天带来一个简单的线性结构上的DP,与上次的照明系统(UVA11400)是同一种类型题,便于大家类比.总结.理解,但难度上降低了. We say a sequence of characters is ...
- Maximum Control (medium) Codeforces - 958B2
https://codeforces.com/contest/958/problem/B2 题解:https://www.cnblogs.com/Cool-Angel/p/8862649.html u ...
- url各部分组成分解
url各部分组成分解介绍:关于url可能大家都不陌生,第一印象就是网址.但是深究起来,不少朋友并明白里面的一些细节,下面就来进行一下分解.scheme://host:port/path?query#f ...
- android 日期 时间
/** * 给定一个日期型字符串,返回加减n天后的日期型字符串 * * @param basicDate * @param nDays * @return */ public static Strin ...
- Lucene全文检索技术学习
---------------------------------------------------------------------------------------------------- ...
- php关于精准计算的模块 BCMath
Php: BCMath bc是Binary Calculator的缩写.bc*函数的参数都是操作数加上一个可选的 [int scale],比如string bcadd(string $left_ope ...
- Azure CLI 2.0-Azure新命令行工具介绍
Azure CLI 2.0 是 Azure 的新命令行体验,用于管理 Azure 资源. 可以将其安装在 macOS.Linux 和 Windows 上,然后从命令行运行它. Azure CLI 2. ...
- Sqlserver 2012 Always on技术
使用了Sqlserver 2012 Always on技术后,假如采用的配置是默认配置,会出现Primary server CPU很高的情况发生,比如默认配置如下: 需要自定义来解决这个问题. 我们先 ...
- Mysql闪回工具之binlog2sql的原理及其使用
生产上误删数据.误改数据的现象也是时常发生的现象,作为运维这时候就需要出来补锅了,最开始的做法是恢复备份,然后从中找到需要的数据再进行修复,但是这个时间太长了,对于大表少数数据的修复来讲,动作太大,成 ...