洛谷 P1031 均分纸牌【交叉模拟】
题目描述
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
①9②8③17④6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入输出格式
输入格式:
键盘输入文件名。文件格式:
N(N 堆纸牌,1 <= N <= 100)
A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出格式:
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。
输入输出样例
4
9 8 17 6
3
【分析】:
(1)计算出平均纸牌数
(2)对牌叠预处理(也可以不作处理)
(3)模拟移牌情况
(4)输出答案
因为只能移动相邻的,可以将牌少于avg的把后一个减少(avg - 前一个),计数器++;多于的同理
#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
using namespace std;
int main()
{
int n,i,sum=,ans=,a[];
scanf("%d",&n);
for(i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
sum/=n;//平均值
for(i=;i<=n;i++)
{
if(a[i]<sum)//多了
{
ans++;
a[i+]-=(sum-a[i]);
}
else
if(a[i]>sum)//少了
{
ans++;
a[i+]+=(a[i]-sum);
}
}
printf("%d\n",ans);
return ;
}
不预处理模拟
我们可以把平均值设为0,牌数大于平均值的排堆牌数为正数,反之则为负数。
#include<bits/stdc++.h>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int a[];
const int inf = 0x3f3f3f3f;
int main()
{
int n, sum = , Min = inf, Max = -inf, cnt = ;
cin >> n;
for(int i=; i<=n; i++)
{
cin >> a[i];
sum += a[i];
}
int avg = sum / n;
for(int i=; i<=n; i++)
{
a[i] -= avg;
}
for(int i=; i<=n; i++)
{
if(a[i] == ) continue;
a[i+] = a[i+] + a[i];
cnt++;
}
cout<<cnt<<endl;
}
预处理模拟
洛谷 P1031 均分纸牌【交叉模拟】的更多相关文章
- 洛谷P1031 均分纸牌
P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌 ...
- 洛谷 P1031 均分纸牌
P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...
- 洛谷 P1031 均分纸牌 Label:续命模拟QAQ
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...
- [NOIP2002] 提高组 洛谷P1031 均分纸牌
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...
- 洛谷——P1031 均分纸牌
https://www.luogu.org/problem/show?pid=1031#sub 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以 ...
- (Java实现) 洛谷 P1031 均分纸牌
题目描述 有NN堆纸牌,编号分别为 1,2,-,N1,2,-,N.每堆上有若干张,但纸牌总数必为NN的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为11堆上取的纸牌,只能移到编号为 ...
- 洛谷P1368 均分纸牌(加强版)
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 洛谷P1368 均分纸牌(加强版) [2017年6月计划 数论14]
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 洛谷 P5594 【XR-4】模拟赛
洛谷 P5594 [XR-4]模拟赛 洛谷传送门 题目描述 X 校正在进行 CSP 前的校内集训. 一共有 nn 名 OIer 参与这次集训,教练为他们精心准备了 mm 套模拟赛题. 然而,每名 OI ...
随机推荐
- 2015-2016 Northwestern European Regional Contest (NWERC 2015)
训练时间:2019-04-05 一场读错三个题,队友恨不得手刃了我这个坑B. A I J 简单,不写了. C - Cleaning Pipes (Gym - 101485C) 对于有公共点的管道建边, ...
- 华东交通大学2018年ACM“双基”程序设计竞赛 K
MIKU酱是个玩游戏氪金的人,游戏公司给她制定了新的规则,如果想从关卡i到关卡j,你需要交一些钱就可以了,但同时,MIKU酱的爸爸zjw很爱她,所以她可以每过一关就向她爸要一次钱,但她爸每次给他的钱是 ...
- 6、python中的元组
元组(tuple)是python中有序.不可变的数据结构.元组还是python四种数据结构中唯一一种不可变的数据结构. 一.前言 元组在很多方面都变现得跟列表一样,除了列表储存得对象是可变得,而元组储 ...
- SQLAlchemy Script
SQLAlchemy: 1.由于sqlalchemy中没有提供choice方法,所以借助SQLAlchemy-Utils组件提供的choice方法 from sqlalchemy_utils impo ...
- webpack vue-cli 常见问题总结
1. webpack打包压缩 ES6 js..vue报错: ERROR in js/test.js from UglifyJs Unexpected token punc ?(?, expected ...
- outlook同步异常
新装的系统,备份了outlook,还原后发现,outlook还在不停的同步服务端邮件,设置规则,禁止接收今天之前的邮件,但是outloock还是在同步,只是不接收而已,这样导致了莫名其妙的异常错误,o ...
- [MUTC2013][bzoj3513] idiots [FFT]
题面 传送门 思路 首先有一个容斥原理的结论:可以组成三角形的三元组数量=所有三元组-不能组成三角形的三元组 也就是说我们只要求出所有不能组成三角形的三元组即可 我们考虑三元组(a,b,c),a< ...
- 想象一下(imagine)
想象一下(imagine) 题目描述 我们高大的老班举起了有半个他那么高的三角板,说:"你们想象一下--" 于是你就陷入了想象-- 有一棵n个点的树,每个叶子节点上都有一个人,他们 ...
- Python 安装MySQLdb模块遇到报错及解决方案:_mysql.c(42) : fatal error C1083: Cannot open include file: 'config-win.h': No such file or directory
一.问题 系统:win7 64位 在下载MySQL-python-1.2.5.zip,使用python setup.py install 安装时,出现以下报错: _mysql.c(42) : fata ...
- 【09】Vue 之 Vuex 数据通信
9.1. 引言 Vue组件化做的确实非常彻底,它独有的vue单文件组件也是做的非常有特色.组件化的同时带来的是:组件之间的数据共享和通信的难题. 尤其Vue组件设计的就是,父组件通过子组件的prop进 ...