题目传送门

这道题暑假做的时候太模糊了,以前的那篇题解大家就别看了==。今天再复习状压感觉自己当时在写些什么鸭...。

题目大意:给你一个\(n\)*\(m\)的棋盘和许多\(1*2\)的骨牌,骨牌可以竖放或横放,问有多少种方案将骨牌铺满。

设计状态,\(f[i][j]\)表示当前在第\(i\)行,之前的所有行都已经铺满,当前行的状态为\(j\)的方案数。如果我们对01串的定义仍确定为1为放了0为没放,那么真的对嘛?

好像不行,存出不了那么多信息。我们试着改变0和1的含义。因为骨牌要么是横放要么是竖放,那么我们设第\(k\)位为1是一个竖矩形的上面一半,为0代表其他情况。

考虑转移,第\(i-1\)行能转移到第\(i\)行当且仅当①这一行状态与上一行状态与运算为0.(保证了每个数字为1的位下面一定为0,以继续补全)。②两行状态或运算后的二进制表示,连续的0长度必须为偶数,表示横放。

于是我们可以预处理出所有横放的情况,再进行\(O(4^m*n)\)的转移。目标状态\(f[n][0]\)。

把01的含义改变的思想妙啊。

#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
typedef long long ll; int n,m,fake;
ll f[12][4200000];
bool qwq[4200000]; int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&n!=0)
{
fake=(1<<m)-1;
// for(int i=0;i<=fake;i++)
// if(check(i)) qwq[i]=1;
for(int i=0;i<=fake;i++)
{
bool cnt=0,has_odd=0;
for(int j=0;j<m;j++)
if((i>>j)&1) has_odd|=cnt,cnt=0;
else cnt^=1;
qwq[i]=has_odd | cnt ? 0 : 1;
}
f[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=fake;j++)
{
f[i][j]=0;
for(int k=0;k<=fake;k++)
{
if(j&k) continue;
if(!qwq[j|k]) continue;
f[i][j]+=f[i-1][k];
}
}
printf("%lld\n",f[n][0]);
}
return 0;
}

POJ 2411 Mondriaan's Dream 【状压Dp】 By cellur925的更多相关文章

  1. POJ 2411 Mondriaan's Dream -- 状压DP

    题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...

  2. Poj 2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...

  3. POJ 2411 Mondriaan's Dream ——状压DP 插头DP

    [题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...

  4. POJ 2411 Mondriaan'sDream(状压DP)

    题目大意:一个矩阵,只能放1*2的木块,问将这个矩阵完全覆盖的不同放法有多少种. 解析:如果是横着的就定义11,如果竖着的定义为竖着的01,这样按行dp只需要考虑两件事儿,当前行&上一行,是不 ...

  5. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  6. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  7. POJ - 2411 Mondriaan's Dream(轮廓线dp)

    Mondriaan's Dream Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nig ...

  8. poj 2411 Mondriaan's Dream(状态压缩dP)

    题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...

  9. poj 2411 Mondriaan's Dream (轮廓线DP)

    题意:有一个n*m的棋盘,要求用1*2的骨牌来覆盖满它,有多少种方案?(n<12,m<12) 思路: 由于n和m都比较小,可以用轮廓线,就是维护最后边所需要的几个状态,然后进行DP.这里需 ...

  10. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...

随机推荐

  1. 51nod 1737配对

    题意:给定一个n个点的带边权树,  保证n是偶数,给这个树两两配对,使得配对后的点路径和最大,输出最大值. 其实是个很简单的题,但还是被绊了.这充分说明现在连简单题都做不来了555 单独考虑每条边.每 ...

  2. java中判断字符串是否相等有两种方法:

    1.用“==”运算符,该运算符表示指向字符串的引用是否相同,比如: String a="abc";String b="abc",那么a==b将返回true.这是 ...

  3. laravel基础课程---16、数据迁移(数据库迁移是什么)

    laravel基础课程---16.数据迁移(数据库迁移是什么) 一.总结 一句话总结: 是什么:数据库迁移就像是[数据库的版本控制],可以让你的团队轻松修改并共享应用程序的数据库结构. 使用场景:解决 ...

  4. hdu 1042 N!(大数)

    题意:求n!(0 ≤ N ≤ 10000) 思路:大数,用数组存储 1.首先要考虑数据N!的位数,因为最大是10000!,可以计算一下大概是5+9000*4+900*3+90*2+10*1=38865 ...

  5. unable to create new native thread 问题

    ulimit -a ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling pr ...

  6. 1053 Path of Equal Weight (30)(30 分)

    Given a non-empty tree with root R, and with weight W~i~ assigned to each tree node T~i~. The weight ...

  7. Codefoeces 734F. Anton and School 数学

    Codefoeces 734F 题目大意: 给定两个正整数序列\(b,c\)构造一个正整数序列\(a\)使其满足 \[ \left\{ \begin{array}{} b_i=(a_i\text{ a ...

  8. Codeforces 756C Nikita and stack

    Codeforces 756C Nikita and stack 题目大意: 给定一个对栈进行操作的操作序列,初始时序列上没有任何操作,每一次将一个本来没有操作的位置变为某一操作(push(x),po ...

  9. 系列文章-- SSIS学习

    SSIS是SQL Server Integraion Services的简称.是生成高性能数据集成解决方案(包括数据仓库的提取.转换和加载 (ETL) 包)的平台.   SSIS组件转换_模糊查找转换 ...

  10. SQL 优化总结(二) 索引

     索引 1.索引的建立 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的:合理的索引设计要建立在对各种查询的分析和预测上. 一般来说: (1) 有大量重复值.且经常有范围查询(between, ...