洛谷P1587 [NOI2016]循环之美
不会,先坑着
https://kelin.blog.luogu.org/solution-p1587
//minamoto
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=7e5+,E=2e6+;
typedef int arr[N];typedef long long ll;
struct Am{int nx,x,w;}e1[E];
struct Ans{int nx,n,m,k;ll w;}e2[E];
int n,m,k,M,c1,c2,K[],f1[E],f2[E];arr vis,p,mu,sum;
int Sm(int x){
if(x<=M) return sum[x];
int u=(x+)%E;
for(int i=f1[u];i;i=e1[i].nx)
if(e1[i].x==x) return e1[i].w;
e1[++c1]=(Am){f1[u],x,},f1[u]=c1;
int &w=e1[c1].w,i=,j=sqrt(x);
for(;i<=j;++i) w-=Sm(x/i);
for(;i<=x;i=j+)
j=x/(x/i),w-=(j-i+)*Sm(x/i);
return w;
}
ll sol(int n,int m,int k){
if(!n||!m) return ;
int u=(2017ll*n+m+k)%E;
for(int i=f2[u];i;i=e2[i].nx)
if(e2[i].n==n&&e2[i].m==m&&e2[i].k==k) return e2[i].w;
e2[++c2]=(Ans){f2[u],n,m,k,},f2[u]=c2;ll &w=e2[c2].w;
if(k==){
if(n>m) swap(n,m);
int i=,j=sqrt(n),s,t=,x,y;
for(;i<=j;++i,t=s) s=Sm(i),w+=1ll*(n/i)*(m/i)*(s-t);
for(;i<=n;i=j+,t=s)x=n/i,y=m/i,j=min(n/x,m/y),s=Sm(j),w+=1ll*x*y*(s-t);
u=(2017ll*m+n+k)%E;e2[++c2]=(Ans){f2[u],m,n,k,w},f2[u]=c2;
}
else for(int i=;i<=K[]&&K[i]<=k;++i)
if(k%K[i]==&&mu[K[i]])
w+=sol(m/K[i],n,K[i])*mu[K[i]];
return w;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d%d",&n,&m,&k);
M=min(N-,max(k,min(n,m))),sum[]=mu[]=;
for(int i=;i<=M;++i){
if(!vis[i]) p[++p[]]=i,mu[i]=-;
for(int j=,x;j<=p[]&&(x=i*p[j])<=M;++j){
vis[x]=;
if(i%p[j]==) break;
mu[x]=-mu[i];
}
sum[i]=sum[i-]+mu[i];
}
for(int i=;i<=k;++i)
if(k%i==) K[++K[]]=i;
printf("%lld\n",sol(n,m,k));
return ;
}
洛谷P1587 [NOI2016]循环之美的更多相关文章
- Solution -「NOI 2016」「洛谷 P1587」循环之美
\(\mathcal{Description}\) Link. 给定 \(n,m,k\),求 \(x\in [1,n]\cap\mathbb N,y\in [1,m]\cap \mathbb ...
- luogu P1587 [NOI2016]循环之美
传送门 首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那 ...
- 并不对劲的bzoj4652:loj2085:uoj221:p1587:[NOI2016]循环之美
题目大意 对于已知的十进制数\(n\)和\(m\),在\(k\)进制下,有多少个数值上互不相等的纯循环小数,可以用\(x/y\)表示,其中 \(1\leq x\leq n,1\leq y\leq m\ ...
- [UOJ#221][BZOJ4652][Noi2016]循环之美
[UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...
- luogu 1587 [NOI2016]循环之美
LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
- LOJ 2085: 洛谷 P1587: bzoj 4652: 「NOI2016」循环之美
题目传送门:LOJ #2085. 两个月之前做的傻题,还是有必要补一下博客. 题意简述: 求分子为不超过 \(n\) 的正整数,分母为不超过 \(m\) 的正整数的所有互不相等的分数中,有多少在 \( ...
- 题解 P1587 【[NOI2016]循环之美】
知识点:莫比乌斯反演 积性函数 杜教筛 废话前言: 我是古明地恋,写这篇题解的人已经被我 请各位读者自行无视搞事的恋恋带有删除线的内容,谢谢茄子. 这道题目本身并不难,但是公式推导/代码过程中具有迷惑 ...
- bzoj4652 [Noi2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...
随机推荐
- PYTHON加密解密字符串
依赖包安装部分 安装依赖包: pip install pycryptodome 在你的python环境中的下图红框路径中找到 crypto 将其改成 Crypto 代码部分 #!/usr/bin/en ...
- JavaScript预解释是一种毫无节操的机制
前言 JavaScript是一门解释型的语言 , 想要运行JavaScript代码需要两个阶段 编译阶段: 编译阶段就是我们常说的JavaScript预解释(预处理)阶段,在这个阶段JavaScrip ...
- 数据结构ADT是什么
抽象数据类型的缩写 abstract data type .表示数据结构的抽象模型.数据结构是一个数据概念的定义,通过各种工具对数据结构的概念类型的描述称之为抽象数据类型,简单地说是指一个数学模型以及 ...
- image auto fix the View
image: { flex: 1, width: null, height: null, resizeMode: 'contain' }
- python的小知识点
python中的变量的名字必须由字母.数字.下划线组成,并且不可以以数字开头. 字典的内容是键-值对,键必须是不可变的,比如字符,整数,浮点数,元组,列表不可以,因为列表可变.集合的元素不重复.字典和 ...
- L92
The Difference between Honesty and Cheating We sign our names to various documents all the time. Som ...
- 【Lintcode】118.Distinct Subsequences
题目: Given a string S and a string T, count the number of distinct subsequences of T in S. A subseque ...
- python爬虫知识点总结(二)爬虫的基本原理
一.什么是爬虫? 答:请求网页并提取数据的自动化程序. 二.爬虫的基本流程 三.什么是Request和Response? 1.Request 2.Response 四.能抓取怎样的数据 五.解析方式 ...
- poj1135Domino Effect——最短路
题目:http://poj.org/problem?id=1135 先在图中跑一遍最短路,最后倒的牌可能是dis值最大的点,也可能是在dis值最大的点所连的边上,尝试一下即可: 坑:n=1的时候输出点 ...
- XAML 编码规范 (思考)
1.尽量和Blend统一 2.兄弟元素之间需要空行 4.父子元素之间不需要空格 3.每行尽量单个属性 5.Grid的Row和Column定义不需要空行 6.Style里的Setter中不需要单行一个属 ...