Unsupervised Image-to-Image Translation Networks --- Reading Writing

2017.03.03

  Motivations: most existing image to image translation algorithms are all need image pairs as training data for deep neural network, such as CGANs or VAEs. But in some cases, it is rather difficult to collect such training data. For example, the night and day image pairs, the perfect aligned thermal RGB image pairs, or sunning rainning, fogging, et al, which provide us a new challenging problem:

  How to do image to image translation in a unsupervised fashion which do not need aligned image pairs ?

This paper proposed the UNIT framework (UNsupervised Image-to-image Translation network) to deal with this problem which combine VAE and GANs. The whole framework can be described as the following figures which seems complex but rather easy to understand.

  

  There are two most important assumptions about the proposed framework:

  1. we assume that the relationship between X1 and X2 does not only exist at the image level but also at the level of local patches or regions.

  2. for any given images x1 and x2,  there exists a common underlying representation z, such that we can cover both images from this underlying representation from each of the two input images.

  VAEs: the encoder-generator pair {E1, G1} constitutes a VAE for the X1 domain, termed VAE1. Another pair of {E2, G2} constitutes a VAE for the X2 domain VAE2.

    Weight-sharing : we enforce a weight-sharing constraint to relate the representations in the two VAEs.

  GANs :  two GANs are used to output the two domains.

  

  

  

  


    Experiments:

  

  

    

  

  

  

Unsupervised Image-to-Image Translation Networks --- Reading Writing的更多相关文章

  1. Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary

    Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary 2017.03.08 ...

  2. Unsupervised Image-to-Image Translation Networks

    Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布.给定一个边缘分布,可以得到很多种联合分布.如果不加入额外的假设条件的话,从边缘分布无法推 ...

  3. reading/writing files in Python

    file types: plaintext files, such as .txt .py Binary files, such as .docx, .pdf, iamges, spreadsheet ...

  4. 【Deep Learning】Hinton. Reducing the Dimensionality of Data with Neural Networks Reading Note

    2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心 ...

  5. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  6. The Unreasonable Effectiveness of Recurrent Neural Networks (RNN)

    http://karpathy.github.io/2015/05/21/rnn-effectiveness/ There’s something magical about Recurrent Ne ...

  7. 26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL

    26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL In the beginning of August I got the chance t ...

  8. DotNet 资源大全中文版(Awesome最新版)

    Awesome系列的.Net资源整理.awesome-dotnet是由quozd发起和维护.内容包括:编译器.压缩.应用框架.应用模板.加密.数据库.反编译.IDE.日志.风格指南等. 算法与数据结构 ...

  9. (转) Awesome - Most Cited Deep Learning Papers

    转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...

随机推荐

  1. Yii2返回以主键id为键名的数组

    branch.php <?php namespace app\models; use Yii; /** * This is the model class for table "bra ...

  2. 05 enumerate index使用

    # enumerate 自动生成一列, 默认0开始,每次自增+1li = ["电脑","鼠标垫","U盘","游艇"]f ...

  3. html5-css的使用强制优先级

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  4. jQuery样式--css(name|pro|[,val|fn])

    css(name|pro|[,val|fn]) 概述 访问匹配元素的样式属性 参数 name  要访问的属性名称 name  一个或多个CSS属性组成的一个数组 properties  要设置为样式属 ...

  5. 压缩和解压缩(I)

    ZipArchive 压缩方法 -(void)zipArchiveWithFiles { //创建解压缩对象 ZipArchive *zip = [[ZipArchive alloc]init]; / ...

  6. XML系列之--解析电文格式的XML(二)

    上一节介绍了XML的结构以及如何创建.讲到了XML可作为一种简单文本存储数据,把数据存储起来,以XML的方式进行传递.当接收到XML时,必不可少的就是对其进行解析,捞取有效数据,或者将第三方数据以节点 ...

  7. SLAM学习笔记 - 视觉SLAM方法资源汇总

    工具类: ros框架 linux系列教程     vim Eigen     Eigen快速入门 Pangolin  Pangolin安装与使用 数据集: TUM         数据格式 提供pyt ...

  8. Linux基础命令---arch

    Arch         Arch指令主要用于显示当前主机的硬件结构类型,我们可以看到它输出的结果有:i386.i486.mips.alpha等.此命令的适用范围:RedHat.RHEL.Ubuntu ...

  9. Linux下几种重启Nginx的方式,找出nginx配置文件路径和测试配置文件是否正确

    Linux下几种重启Nginx的方式,找出nginx配置文件路径和测试配置文件是否正确 目录在/etc/ngnix/conf.d下找出nginx配置文件路径和测试配置文件是否正确# /usr/sbin ...

  10. Inception 模型

    https://blog.csdn.net/xxiaozr/article/details/71481356 inception v1: 去除了最后的全连接层,使用全局平均池化层来代替,因为全连接层的 ...