Unsupervised Image-to-Image Translation Networks --- Reading Writing
Unsupervised Image-to-Image Translation Networks --- Reading Writing
2017.03.03
Motivations: most existing image to image translation algorithms are all need image pairs as training data for deep neural network, such as CGANs or VAEs. But in some cases, it is rather difficult to collect such training data. For example, the night and day image pairs, the perfect aligned thermal RGB image pairs, or sunning rainning, fogging, et al, which provide us a new challenging problem:
How to do image to image translation in a unsupervised fashion which do not need aligned image pairs ?
This paper proposed the UNIT framework (UNsupervised Image-to-image Translation network) to deal with this problem which combine VAE and GANs. The whole framework can be described as the following figures which seems complex but rather easy to understand.

There are two most important assumptions about the proposed framework:
1. we assume that the relationship between X1 and X2 does not only exist at the image level but also at the level of local patches or regions.
2. for any given images x1 and x2, there exists a common underlying representation z, such that we can cover both images from this underlying representation from each of the two input images.
VAEs: the encoder-generator pair {E1, G1} constitutes a VAE for the X1 domain, termed VAE1. Another pair of {E2, G2} constitutes a VAE for the X2 domain VAE2.
Weight-sharing : we enforce a weight-sharing constraint to relate the representations in the two VAEs.
GANs : two GANs are used to output the two domains.



Experiments:

Unsupervised Image-to-Image Translation Networks --- Reading Writing的更多相关文章
- Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary
Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary 2017.03.08 ...
- Unsupervised Image-to-Image Translation Networks
Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布.给定一个边缘分布,可以得到很多种联合分布.如果不加入额外的假设条件的话,从边缘分布无法推 ...
- reading/writing files in Python
file types: plaintext files, such as .txt .py Binary files, such as .docx, .pdf, iamges, spreadsheet ...
- 【Deep Learning】Hinton. Reducing the Dimensionality of Data with Neural Networks Reading Note
2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心 ...
- On Explainability of Deep Neural Networks
On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...
- The Unreasonable Effectiveness of Recurrent Neural Networks (RNN)
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ There’s something magical about Recurrent Ne ...
- 26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL
26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL In the beginning of August I got the chance t ...
- DotNet 资源大全中文版(Awesome最新版)
Awesome系列的.Net资源整理.awesome-dotnet是由quozd发起和维护.内容包括:编译器.压缩.应用框架.应用模板.加密.数据库.反编译.IDE.日志.风格指南等. 算法与数据结构 ...
- (转) Awesome - Most Cited Deep Learning Papers
转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...
随机推荐
- loadrunner 更新中......
一.安装及参考说明 1.51 testing 链接:http://www.51testing.com/zhuanti/LoadRunner.html 2.官网链接:http://learnloadru ...
- 浏览器页面请求js、css大文件处理
当页面引用一个比较大的js和css文件时,会出现较大下载延迟,占用带宽的问题,如果一个应用里有很多这样的js或CSS文件,那么就需要优化了. 比如ext-all.js有1.4M,页面引用这个文件,正常 ...
- 大数据处理框架之Strom:Storm集群环境搭建
搭建环境 Red Hat Enterprise Linux Server release 7.3 (Maipo) zookeeper-3.4.11 jdk1.7.0_80 Pyth ...
- python seek()方法报错:“io.UnsupportedOperation: can't do nonzero cur-relative seeks”
今天使用seek()时报错了, 看下图 然后就百度了一下,找到了解决方法 这篇博客https://www.cnblogs.com/xisheng/p/7636736.html 帮忙解决了问题, 照理说 ...
- node.js的on、emit、off封装
//绑定事件.触发事件和移除事件 //绑定事件 //on(eventName,cb){} //第一步判断当前事件是否存在,如果不存在则初始化:key:[],然后在将回调函数添加到数据中去 let ev ...
- 使用Holer远程桌面登录家里电脑和公司内网电脑
1. Holer工具简介 Holer exposes local servers behind NATs and firewalls to the public internet over secur ...
- mean shift 图像分割(一、二、三)
https://blog.csdn.net/u011511601/article/details/72843247 MeanShift图像分割算法:大概是将复杂的背景,通过粗化提取整体信息,进而将图像 ...
- 网上搜到的权限系统demo
网上搜到的权限系统demo http://www.sojson.com/shiro
- 安装PHP扩展32位与64位的误区(x86与x64的查看)
在安装PHP扩展(DLL,SO),除了需要对应的PHP版本外,在WINDOWS还需要区分(TS线程,NTS非线程),如何判断呢? 1.如何判断是NTS还是TS(WINDOWS用户) 看PHP所在目录中 ...
- android 颜色值参考,(有颜色图
) 2011-10-13 19:55:30| 分类: android | 标签:android颜色值|字号大中小 订阅 Android 常用RGB值以及中英文名称 颜 色 RGB值 英文名 中文名 ...