Unsupervised Image-to-Image Translation Networks --- Reading Writing

2017.03.03

  Motivations: most existing image to image translation algorithms are all need image pairs as training data for deep neural network, such as CGANs or VAEs. But in some cases, it is rather difficult to collect such training data. For example, the night and day image pairs, the perfect aligned thermal RGB image pairs, or sunning rainning, fogging, et al, which provide us a new challenging problem:

  How to do image to image translation in a unsupervised fashion which do not need aligned image pairs ?

This paper proposed the UNIT framework (UNsupervised Image-to-image Translation network) to deal with this problem which combine VAE and GANs. The whole framework can be described as the following figures which seems complex but rather easy to understand.

  

  There are two most important assumptions about the proposed framework:

  1. we assume that the relationship between X1 and X2 does not only exist at the image level but also at the level of local patches or regions.

  2. for any given images x1 and x2,  there exists a common underlying representation z, such that we can cover both images from this underlying representation from each of the two input images.

  VAEs: the encoder-generator pair {E1, G1} constitutes a VAE for the X1 domain, termed VAE1. Another pair of {E2, G2} constitutes a VAE for the X2 domain VAE2.

    Weight-sharing : we enforce a weight-sharing constraint to relate the representations in the two VAEs.

  GANs :  two GANs are used to output the two domains.

  

  

  

  


    Experiments:

  

  

    

  

  

  

Unsupervised Image-to-Image Translation Networks --- Reading Writing的更多相关文章

  1. Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary

    Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary 2017.03.08 ...

  2. Unsupervised Image-to-Image Translation Networks

    Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布.给定一个边缘分布,可以得到很多种联合分布.如果不加入额外的假设条件的话,从边缘分布无法推 ...

  3. reading/writing files in Python

    file types: plaintext files, such as .txt .py Binary files, such as .docx, .pdf, iamges, spreadsheet ...

  4. 【Deep Learning】Hinton. Reducing the Dimensionality of Data with Neural Networks Reading Note

    2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心 ...

  5. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  6. The Unreasonable Effectiveness of Recurrent Neural Networks (RNN)

    http://karpathy.github.io/2015/05/21/rnn-effectiveness/ There’s something magical about Recurrent Ne ...

  7. 26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL

    26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL In the beginning of August I got the chance t ...

  8. DotNet 资源大全中文版(Awesome最新版)

    Awesome系列的.Net资源整理.awesome-dotnet是由quozd发起和维护.内容包括:编译器.压缩.应用框架.应用模板.加密.数据库.反编译.IDE.日志.风格指南等. 算法与数据结构 ...

  9. (转) Awesome - Most Cited Deep Learning Papers

    转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...

随机推荐

  1. MQTT 发布者订阅者

    添加依赖: <dependency> <groupId>org.eclipse.paho</groupId> <artifactId>org.eclip ...

  2. 概念、DW介绍

    网页设计知识点大致分为五个部分,分别是: 1.概念.DW介绍: 2.标签: 3.样式表CSS: 4.JQuery: 5.JavaScript 概念.DW介绍: 一.网页的基本结构 <!--文档声 ...

  3. 【2017-03-28】JS基础、DOM操作

    一.JS基础 1.javascript功能 ⑴进行数据运算 ⑵控制浏览器功能 ⑶控制元素的属性.样式.内容 2.javascript位置和格式 可以放在html页的任意位置,也可以创建一个以js结尾的 ...

  4. python之小数据池

    代码块 Python 程序 是由代码块构造的.块是一个python程序的文本,它是作为一个执行单元的. 代码块:一个模块,一个函数,一个类,一个文件等都是一个代码块. 而作为交互方式输入的每个命令都是 ...

  5. python 读写json数据

    json 模块提供了一种很简单的方式来编码和解码JSON 数据. 字符串操作 其中两个主要的函数是json.dumps() 和json.loads() ,要比其他序列化函数库如pickle 的接口少得 ...

  6. SQL SERVER镜像配置,无法将 ALTER DATABASE 命令发送到远程服务器实例的解决办法

    环境:非域环境 因为是自动故障转移,需要加入见证,事务安全模式是,强安全FULL模式 做到最后一步的时候,可能会遇到 执行( ALTER DATABASE [mirrortest] SET WITNE ...

  7. node 读取多个文件、合并多个文件、读写多个文件

    一.读取文件 1.找文件中匹配的内容 let fs = require('fs') let content = fs.readFileSync('/Users/**/desktop/Test.txt' ...

  8. WTL CHyperLink类的使用(超链接)

    1.包含atlctrlx.h头文件: 2.声明一个CHyperLink类的变量: CHyperLink        m_linkIntro; 3.在OnInitDialog函数里: m_linkIn ...

  9. SSM整合Mybatis-Spring

    mybatis -Spring 整合 cn.kitty.bean public class Book { private int bookid; private String bookname; pr ...

  10. Python笔记 #20# SOM

    SOM(自组织映射神经网络)是一种可以根据输入对象的特征自动进行分类(聚类)的神经网络.向该网络输入任意维度的向量都会得到一个二维图像, 不同特征的输入会被映射到二维图像的不同地方(所以SOM也可以用 ...