Unsupervised Image-to-Image Translation Networks --- Reading Writing

2017.03.03

  Motivations: most existing image to image translation algorithms are all need image pairs as training data for deep neural network, such as CGANs or VAEs. But in some cases, it is rather difficult to collect such training data. For example, the night and day image pairs, the perfect aligned thermal RGB image pairs, or sunning rainning, fogging, et al, which provide us a new challenging problem:

  How to do image to image translation in a unsupervised fashion which do not need aligned image pairs ?

This paper proposed the UNIT framework (UNsupervised Image-to-image Translation network) to deal with this problem which combine VAE and GANs. The whole framework can be described as the following figures which seems complex but rather easy to understand.

  

  There are two most important assumptions about the proposed framework:

  1. we assume that the relationship between X1 and X2 does not only exist at the image level but also at the level of local patches or regions.

  2. for any given images x1 and x2,  there exists a common underlying representation z, such that we can cover both images from this underlying representation from each of the two input images.

  VAEs: the encoder-generator pair {E1, G1} constitutes a VAE for the X1 domain, termed VAE1. Another pair of {E2, G2} constitutes a VAE for the X2 domain VAE2.

    Weight-sharing : we enforce a weight-sharing constraint to relate the representations in the two VAEs.

  GANs :  two GANs are used to output the two domains.

  

  

  

  


    Experiments:

  

  

    

  

  

  

Unsupervised Image-to-Image Translation Networks --- Reading Writing的更多相关文章

  1. Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary

    Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary 2017.03.08 ...

  2. Unsupervised Image-to-Image Translation Networks

    Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布.给定一个边缘分布,可以得到很多种联合分布.如果不加入额外的假设条件的话,从边缘分布无法推 ...

  3. reading/writing files in Python

    file types: plaintext files, such as .txt .py Binary files, such as .docx, .pdf, iamges, spreadsheet ...

  4. 【Deep Learning】Hinton. Reducing the Dimensionality of Data with Neural Networks Reading Note

    2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心 ...

  5. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  6. The Unreasonable Effectiveness of Recurrent Neural Networks (RNN)

    http://karpathy.github.io/2015/05/21/rnn-effectiveness/ There’s something magical about Recurrent Ne ...

  7. 26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL

    26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL In the beginning of August I got the chance t ...

  8. DotNet 资源大全中文版(Awesome最新版)

    Awesome系列的.Net资源整理.awesome-dotnet是由quozd发起和维护.内容包括:编译器.压缩.应用框架.应用模板.加密.数据库.反编译.IDE.日志.风格指南等. 算法与数据结构 ...

  9. (转) Awesome - Most Cited Deep Learning Papers

    转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...

随机推荐

  1. hdu3511 圆的扫描线

    http://blog.csdn.net/firenet1/article/details/47041145 #include <iostream> #include <algori ...

  2. centos中yum命令删除还原的补救方法介绍

    前言 yum,是Yellow dog Updater Modified的简称,起初是由yellow dog这一发行版的开发者Terra Soft研发,用python写成,那时还叫做yup(yellow ...

  3. Spring 默认的 AopProxy

    Spring 默认的 AopProxy JdkDynamicAopProxy Spring xml 文件默认解析器 DefaultDocumentLoader 采用 standard JAXP-con ...

  4. 设计模式之Factory(工厂)(转)

    定义:提供创建对象的接口. 为何使用? 工厂模式是我们最常用的模式了,著名的Jive论坛 ,就大量使用了工厂模式,工厂模式在Java程序系统可以说是随处可见. 为什么工厂模式是如此常用?因为工厂模式就 ...

  5. POJ 3662 Telephone Lines (二分 + 最短路)

    Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncoop ...

  6. [转载]tnsnames.ora监听配置文件详解

    监听配置文件             为了使得外部进程 如 CAMS后台程序 能够访问 Oracle 数据库 必须配             置 Oracle 网络服务器环境 配置 Oracle 网络 ...

  7. <转>jmeter(十六)配置元件之计数器

    本博客转载自:http://www.cnblogs.com/imyalost/category/846346.html 个人感觉不错,对jmeter讲解非常详细,担心以后找不到了,所以转发出来,留着慢 ...

  8. Step5:SQL Server 跨网段(跨机房)FTP复制

    一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 搭建过程(Process) 注意事项(Attention) 参考文献(References) ...

  9. SpringMVC学习笔记1

    1:IntelliJ新建Maven工程 2:pom.xml文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmln ...

  10. Jenkins实现SVN+Maven+Java项目的持续集成

    Jenkins 2.46.1 Centos 7.3 JDK 7 安装jdk/maven/svn 在Jenkins所在的Linux机器安装jdk和maven,步骤就不说了,下面是环境变量: export ...