题目传送:http://acm.hdu.edu.cn/diy/contest_showproblem.php?cid=20918&pid=1002

Problem Description

  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.

Input

  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.

Output

  For each case, output the number.

Sample Input

12 2
2 3

Sample Output

7

启发博客:http://www.cnblogs.com/jackge/archive/2013/04/03/2997169.html

题目大意:给定n和一个大小为m的集合,集合元素为非负整数。为1...n内能被集合里任意一个数整除的数字个数。n<=2^31,m<=10

 

解题思路:容斥原理地简单应用。先找出1...n内能被集合中任意一个元素整除的个数,再减去能被集合中任意两个整除的个数,即能被它们两只的最小公倍数整除的个数,因为这部分被计算了两次,然后又加上三个时候的个数,然后又减去四个时候的倍数...所以深搜,最后判断下集合元素的个数为奇还是偶,奇加偶减。

 #include<cstdio>
#include<iostream>
using namespace std; long long a[];
long long ans;
int cnt;
int n,m; long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long lcm(long long b,long long c)//计算最小公倍数
{
return b * c/ gcd(b, c);
} void dfs(int cur,int num,long long Lcm)
//深搜,搜出每一种数学组合的可能,因为m<=10所以不会爆
{
Lcm=lcm(Lcm,a[cur]);
if(num%==)
ans-=(n-)/Lcm;
else
ans+=(n-)/Lcm;
for(int j=cur+;j<cnt;j++)//这个j只能放在里面定义!!
dfs(j,num+,Lcm);
}
//cur指当前数字在数组中的位置,num指目前计算公倍数的数字是偶是奇,Lcm指目前计算出的最小公倍数 int main()
{
while(~scanf("%d%d",&n,&m))
{
cnt=;
int x;
while(m--)
{
scanf("%d",&x);
if(x!=)//除去0的那种情况
a[cnt++]=x;
}
ans=;
for(int i=;i<cnt;i++)
dfs(i,,);
//容斥,奇加偶减
printf("%lld\n",ans);
}
return ;
}

HDU 1796 How many integers can you find(容斥原理)的更多相关文章

  1. HDU 1796 How many integers can you find(容斥原理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. HDU 1796 How many integers can you find(容斥原理)

    题意 就是给出一个整数n,一个具有m个元素的数组,求出1-n中有多少个数至少能整除m数组中的一个数 (1<=n<=10^18.m<=20) 题解 这题是容斥原理基本模型. 枚举n中有 ...

  3. HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)

    HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...

  4. HDU 1796 How many integers can you find (状态压缩 + 容斥原理)

    题目链接 题意 : 给你N,然后再给M个数,让你找小于N的并且能够整除M里的任意一个数的数有多少,0不算. 思路 :用了容斥原理 : ans = sum{ 整除一个的数 } - sum{ 整除两个的数 ...

  5. HDU 1796 How many integers can you find 容斥入门

    How many integers can you find Problem Description   Now you get a number N, and a M-integers set, y ...

  6. hdu 1796 How many integers can you find 容斥定理

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. HDU 1796 How many integers can you find(容斥原理+二进制/DFS)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  8. hdu 1796 How many integers can you find 容斥第一题

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  9. hdu 1796 How many integers can you find

    容斥原理!! 这题首先要去掉=0和>=n的值,然后再使用容斥原理解决 我用的是数组做的…… #include<iostream> #include<stdio.h> #i ...

随机推荐

  1. Node.js的环境搭建

    Node.js 可以理解为服务端的JavaScript.是基于Chrome JavaScript 运行时的一个平台. 是一个事件驱动I/O,基于Google V8 引擎,执行起来速度特别快,性能非常好 ...

  2. OCP-1Z0-051-V9.02-13题 单引号的使用

    13. View the Exhibit and examine the structure of the PRODUCTS table. You need to generate a report ...

  3. java集合类整理

    LinkedList 优点:插入删除迅速 缺点:不适合随机访问 List<String> staff = new LinkedList<String>(); staff.add ...

  4. 2017-6-5/MySQL分库分表

    分库分表,顾名思义,就是把原本存储于一个库一张表的数据分块存储到多个库多张表上.对于大型互联网应用来说,当一张表的数据量达到百万.千万时,数据库每执行一次查询所花的时间会变多,并且数据库面临着极高的并 ...

  5. MapReduce(四)

    MapReduce(四) 1.shuffle过程 2.map中setup,map,cleanup的作用. 一.shuffle过程 https://blog.csdn.net/techchan/arti ...

  6. Linux CPU信息和使用情况查看(CentOS)

    一.CPU信息查看 cat /proc/cpuinfo| grep "physical id"| sort -u | wc -l #查看是物理CPU个数,-u和uniq都是去重作用 ...

  7. laravel管理员表中的模型

    <?php namespace App; use App\Model; use Illuminate\Foundation\Auth\User as Authenticatable; class ...

  8. laravel自定义公共函数的引入

    原文地址:http://blog.csdn.net/u011415782/article/details/78925048 步骤指导 1. 创建 functions.php 在 app/Helpers ...

  9. shell 变量介绍

    变量命名规则 变量名必须以字母或下划线开头,名字中间只能由字母,数字和下划线组成,大小写是区分的 变量名的长度不得超过255个字符 变量名在有效的范围内必须是唯一的 在Bash中,变量的默认类型都是字 ...

  10. jquery 元素选择器

    id选择器 JQuery 能使用CSS选择器来操作网页中的标签元素.如果想要通过一个id号去查找另一个元素就可以使用下面格式的选择 $('#my_id') 其中my_id表示根据id选择器获取页面中的 ...