一、安装机器学习的包

1、conda create  -n  ml python=3.6
2、source activate ml
3、升级pip :pip install --upgrade pip
4、安装scikit-learn:conda install scikit-learn (机器学习的框架:scikit-learn)
5、安装pandas:conda install pandas (数据处理工具:pandas)(科学计算包:numpy)
6、返回yixia目录:cd
7、创建一个文件夹:mkdir ml
8、用pyCharm打开ml,新建一个.py文件用于项目开始

二、安装ipython

1、pip install ipython

2、ipython

--ipython就相当于idle这样的一个编译器,区别在于:ipython输入一个字母可以用“.+table”

三、安装并创建django框架

# 环境管理  anconda
1、先安装anconda
# 创建环境
2、终端输入:conda create -n xxxnamexxx(py2) python=2.7 (python=2.7指定的版本,不指定默认为anaconda3的python3.6)
# 激活环境
3、 source activate 创建的名字 py2
#用pyCharm导入环境
4、preferences—> Project: alcore—>Project Interpreter—>add—>exiting environment(…)—>user:yixia:anaconda3—>envs—>py2—>bin—>python2.7—ok
# 安装包
4、pip install 例如django pandas
# 查看拥有几个环境
conda env list
# 查看环境装的包
pip list
# 删除换几个
rm -rf 文件夹
# 退出环境
deactivat

备注:安装所有的框架的前提都是先安装anconda

mac下载地址:https://www.anaconda.com/download/#macos

mac安装方法:https://blog.csdn.net/ff_smile/article/details/78871294

四、web开发框架

web 开发框架
#安装 django
pip install Django
# 新建项目
Django-admin startproject XXX名字

ml机器学习笔记的更多相关文章

  1. 机器学习笔记5-Tensorflow高级API之tf.estimator

    前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...

  2. Python机器学习笔记:不得不了解的机器学习面试知识点(1)

    机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...

  3. 机器学习笔记:Gradient Descent

    机器学习笔记:Gradient Descent http://www.cnblogs.com/uchihaitachi/archive/2012/08/16/2642720.html

  4. Python机器学习笔记:使用Keras进行回归预测

    Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...

  5. Python机器学习笔记:sklearn库的学习

    网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...

  6. 机器学习笔记(4):多类逻辑回归-使用gluton

    接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...

  7. 【转】机器学习笔记之(3)——Logistic回归(逻辑斯蒂回归)

    原文链接:https://blog.csdn.net/gwplovekimi/article/details/80288964 本博文为逻辑斯特回归的学习笔记.由于仅仅是学习笔记,水平有限,还望广大读 ...

  8. [ML学习笔记] XGBoost算法

    [ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这 ...

  9. [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)

    [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...

随机推荐

  1. pandas常用函数

    1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列c ...

  2. c# 确定dynamic类型的数据对象是否存在某个属性

    public static bool IsPropertyExist(dynamic data, string propertyname)   {     if (data is ExpandoObj ...

  3. Spring Boot中Service用@Transactional 注解

    一般来说function2和function1用的是同一个Transaction. 这个取决于@Transactional 的 propagation设置(事务的传播性) 默认的是 1 @Transa ...

  4. jQuery属性--attr(name|properties|key,value|fn)和removeAttr(name)

       attr(name|properties|key,value|fn) 概述     设置或返回被选元素的属性值 参数 key,function(index, attr)  1:属性名称:2:返回 ...

  5. RabbitMQ生产者消费者

    package com.ra.car.rabbitMQ; import java.io.IOException; import java.util.HashMap; import java.util. ...

  6. linux文件系统的用户和权限管理

    1. 为什么要有用户的概念? 多用户,多任务业务对系统资源的隔离产生需求 2. linux 用户的分类? 2.1. 管理员 拥有操作所有文件的权限 2.2. 普通用户 2.2.1. 普通登录用户 2. ...

  7. 20165215 学习基础和c语言基础调查

    学习基础和c语言基础调查 <做中学>读后感与技能学习心得 读后感 Don't watch the clock. Do what it does. Keep going. 不要只看时钟,要效 ...

  8. Linux基础命令---文本统计paste

    paste 将文件以行的方式合并在一起,用tab字符分隔开,将结果送到标准输出.此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语 ...

  9. docker rmi 导致后面的命令不执行问题 Dockerfile设置时区问题

    docker rmi 导致后面的命令不执行问题 把ca=`docker rmi sendemail-service` echo $ca改成docker rmi sendemail-service -f ...

  10. HDU 1232 畅通工程 (并查集)

    某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可). ...