linux内核capable源代码分析【转】
转自:https://blog.csdn.net/sanwenyublog/article/details/50856849
capable函数定义在kernel/capability.c,作用是检验当前进程有没有相应的权限,定义如下
- int capable(int cap)
- {
- return __capable(current, cap);
- }
继续看__capable函数,这个函数也定义在kernel/capability.c,定义如下
- int __capable(struct task_struct *t, int cap)
- {
- /*首先执行security_capable函数检查,如果成功就给进程的flags置位,标志获得超级权限,PF_SUPERPRIV定义如下
- #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */就是超级用户的意思
- */
- if (security_capable(t, cap) == 0) {
- t->flags |= PF_SUPERPRIV;
- return 1;
- }
- return 0;
- }
我们继续看security_capable函数,定义在linux/security.h
- static inline int security_capable(struct task_struct *tsk, int cap)
- {
- return cap_capable(tsk, cap);
- }
继续看cap_capable函数,定义在security/commonncap.c
- int cap_capable (struct task_struct *tsk, int cap)
- {
- /* 权限检查的主要工作函数 */
- if (cap_raised(tsk->cap_effective, cap))
- return 0;
- return -EPERM;
- }
我们继续看cap_raised,这是一个宏,定义如下
#define CAP_TO_MASK(x) (1 << (x))
#define cap_raise(c, flag) (cap_t(c) |= CAP_TO_MASK(flag))
#define cap_lower(c, flag) (cap_t(c) &= ~CAP_TO_MASK(flag))
#define cap_raised(c, flag) (cap_t(c) & CAP_TO_MASK(flag))
所以可以看出cap_capable函数就是查看task_struct的cap_effective变量,然后与(1<<cap)执行按位与操作。
cap_effective变量就是进程结构体里的一个32位的int变量,每一个位代表一个权限,定义如下
- /**
- ** POSIX-标准定义的权限能力
- **/
- #define CAP_CHOWN 0
- /* Override all DAC access, including ACL execute access if
- [_POSIX_ACL] is defined. Excluding DAC access covered by
- CAP_LINUX_IMMUTABLE. */
- #define CAP_DAC_OVERRIDE 1
- /* Overrides all DAC restrictions regarding read and search on files
- and directories, including ACL restrictions if [_POSIX_ACL] is
- defined. Excluding DAC access covered by CAP_LINUX_IMMUTABLE. */
- #define CAP_DAC_READ_SEARCH 2
- /* Overrides all restrictions about allowed operations on files, where
- file owner ID must be equal to the user ID, except where CAP_FSETID
- is applicable. It doesn't override MAC and DAC restrictions. */
- #define CAP_FOWNER 3
- /* Overrides the following restrictions that the effective user ID
- shall match the file owner ID when setting the S_ISUID and S_ISGID
- bits on that file; that the effective group ID (or one of the
- supplementary group IDs) shall match the file owner ID when setting
- the S_ISGID bit on that file; that the S_ISUID and S_ISGID bits are
- cleared on successful return from chown(2) (not implemented). */
- #define CAP_FSETID 4
- /* Used to decide between falling back on the old suser() or fsuser(). */
- #define CAP_FS_MASK 0x1f
- /* Overrides the restriction that the real or effective user ID of a
- process sending a signal must match the real or effective user ID
- of the process receiving the signal. */
- #define CAP_KILL 5
- /* Allows setgid(2) manipulation */
- /* Allows setgroups(2) */
- /* Allows forged gids on socket credentials passing. */
- #define CAP_SETGID 6
- /* Allows set*uid(2) manipulation (including fsuid). */
- /* Allows forged pids on socket credentials passing. */
- #define CAP_SETUID 7
- /**
- ** Linux-specific capabilities
- **/
- /* Transfer any capability in your permitted set to any pid,
- remove any capability in your permitted set from any pid */
- #define CAP_SETPCAP 8
- /* Allow modification of S_IMMUTABLE and S_APPEND file attributes */
- #define CAP_LINUX_IMMUTABLE 9
- /* Allows binding to TCP/UDP sockets below 1024 */
- /* Allows binding to ATM VCIs below 32 */
- #define CAP_NET_BIND_SERVICE 10
- /* Allow broadcasting, listen to multicast */
- #define CAP_NET_BROADCAST 11
- /* Allow interface configuration */
- /* Allow administration of IP firewall, masquerading and accounting */
- /* Allow setting debug option on sockets */
- /* Allow modification of routing tables */
- /* Allow setting arbitrary process / process group ownership on
- sockets */
- /* Allow binding to any address for transparent proxying */
- /* Allow setting TOS (type of service) */
- /* Allow setting promiscuous mode */
- /* Allow clearing driver statistics */
- /* Allow multicasting */
- /* Allow read/write of device-specific registers */
- /* Allow activation of ATM control sockets */
- #define CAP_NET_ADMIN 12
- /* Allow use of RAW sockets */
- /* Allow use of PACKET sockets */
- #define CAP_NET_RAW 13
- /* Allow locking of shared memory segments */
- /* Allow mlock and mlockall (which doesn't really have anything to do
- with IPC) */
- #define CAP_IPC_LOCK 14
- /* Override IPC ownership checks */
- #define CAP_IPC_OWNER 15
- /* Insert and remove kernel modules - modify kernel without limit */
- /* Modify cap_bset */
- #define CAP_SYS_MODULE 16
- /* Allow ioperm/iopl access */
- /* Allow sending USB messages to any device via /proc/bus/usb */
- #define CAP_SYS_RAWIO 17
- /* Allow use of chroot() */
- #define CAP_SYS_CHROOT 18
- /* Allow ptrace() of any process */
- #define CAP_SYS_PTRACE 19
- /* Allow configuration of process accounting */
- #define CAP_SYS_PACCT 20
- /* Allow configuration of the secure attention key */
- /* Allow administration of the random device */
- /* Allow examination and configuration of disk quotas */
- /* Allow configuring the kernel's syslog (printk behaviour) */
- /* Allow setting the domainname */
- /* Allow setting the hostname */
- /* Allow calling bdflush() */
- /* Allow mount() and umount(), setting up new smb connection */
- /* Allow some autofs root ioctls */
- /* Allow nfsservctl */
- /* Allow VM86_REQUEST_IRQ */
- /* Allow to read/write pci config on alpha */
- /* Allow irix_prctl on mips (setstacksize) */
- /* Allow flushing all cache on m68k (sys_cacheflush) */
- /* Allow removing semaphores */
- /* Used instead of CAP_CHOWN to "chown" IPC message queues, semaphores
- and shared memory */
- /* Allow locking/unlocking of shared memory segment */
- /* Allow turning swap on/off */
- /* Allow forged pids on socket credentials passing */
- /* Allow setting readahead and flushing buffers on block devices */
- /* Allow setting geometry in floppy driver */
- /* Allow turning DMA on/off in xd driver */
- /* Allow administration of md devices (mostly the above, but some
- extra ioctls) */
- /* Allow tuning the ide driver */
- /* Allow access to the nvram device */
- /* Allow administration of apm_bios, serial and bttv (TV) device */
- /* Allow manufacturer commands in isdn CAPI support driver */
- /* Allow reading non-standardized portions of pci configuration space */
- /* Allow DDI debug ioctl on sbpcd driver */
- /* Allow setting up serial ports */
- /* Allow sending raw qic-117 commands */
- /* Allow enabling/disabling tagged queuing on SCSI controllers and sending
- arbitrary SCSI commands */
- /* Allow setting encryption key on loopback filesystem */
- /* Allow setting zone reclaim policy */
- #define CAP_SYS_ADMIN 21
- /* Allow use of reboot() */
- #define CAP_SYS_BOOT 22
- /* Allow raising priority and setting priority on other (different
- UID) processes */
- /* Allow use of FIFO and round-robin (realtime) scheduling on own
- processes and setting the scheduling algorithm used by another
- process. */
- /* Allow setting cpu affinity on other processes */
- #define CAP_SYS_NICE 23
- /* Override resource limits. Set resource limits. */
- /* Override quota limits. */
- /* Override reserved space on ext2 filesystem */
- /* Modify data journaling mode on ext3 filesystem (uses journaling
- resources) */
- /* NOTE: ext2 honors fsuid when checking for resource overrides, so
- you can override using fsuid too */
- /* Override size restrictions on IPC message queues */
- /* Allow more than 64hz interrupts from the real-time clock */
- /* Override max number of consoles on console allocation */
- /* Override max number of keymaps */
- #define CAP_SYS_RESOURCE 24
- /* Allow manipulation of system clock */
- /* Allow irix_stime on mips */
- /* Allow setting the real-time clock */
- #define CAP_SYS_TIME 25
- /* Allow configuration of tty devices */
- /* Allow vhangup() of tty */
- #define CAP_SYS_TTY_CONFIG 26
- /* Allow the privileged aspects of mknod() */
- #define CAP_MKNOD 27
- /* Allow taking of leases on files */
- #define CAP_LEASE 28
- #define CAP_AUDIT_WRITE 29
- #define CAP_AUDIT_CONTROL 30
检验权限的时候,就检查进程结构体task_struct对应的位是不是1就ok了。
linux内核capable源代码分析【转】的更多相关文章
- 20169212《Linux内核原理与分析》第二周作业
<Linux内核原理与分析>第二周作业 这一周学习了MOOCLinux内核分析的第一讲,计算机是如何工作的?由于本科对相关知识的不熟悉,所以感觉有的知识理解起来了有一定的难度,不过多查查资 ...
- 2018-2019-1 20189221《Linux内核原理与分析》第四周作业
2018-2019-1 20189221<Linux内核原理与分析>第四周作业 教材学习:<庖丁解牛Linux内核分析> 第 3 章 MenuOS的构造 计算机三大法宝:存储程 ...
- Linux内核源码分析方法_转
Linux内核源码分析方法 转自:http://www.cnblogs.com/fanzhidongyzby/archive/2013/03/20/2970624.html 一.内核源码之我见 Lin ...
- 2019-2020-1 20199308《Linux内核原理与分析》第三周作业
<Linux内核分析> 第二章 操作系统是如何工作的 2.1 函数调用堆栈 3个关键性的方法机制(3个法宝) 存储程序计算机 函数调用堆栈机制 中断 堆栈相关的寄存器 ESP:堆栈指针(s ...
- 2019-2020-1 20199310《Linux内核原理与分析》第三周作业
1.问题描述 计算机的3大法宝是存储程序计算机,函数调用堆栈和中断机制,存储程序计算机已经在上一个博客中进行具体描述,本文将在剩下两方面出发对操作系统是如何工作的进行学习和探讨. 2.解决过程 2.1 ...
- 2019-2020-1 20199329《Linux内核原理与分析》第十一周作业
<Linux内核原理与分析>第十一周作业 一.本周内容概述: 学习linux安全防护方面的知识 完成实验楼上的<ShellShock 攻击实验> 二.本周学习内容: 1.学习& ...
- 2019-2020-1 20199329《Linux内核原理与分析》第九周作业
<Linux内核原理与分析>第九周作业 一.本周内容概述: 阐释linux操作系统的整体构架 理解linux系统的一般执行过程和进程调度的时机 理解linux系统的中断和进程上下文切换 二 ...
- 2019-2020-1 20199329《Linux内核原理与分析》第四周作业
<Linux内核原理与分析>第四周作业 一.上周问题总结: 虚拟机环境缺少部分库文件 书本知识使用不够熟练 二.本周学习内容: 1.实验楼环境使用gdb跟踪调试内核 1.1 在该环境下输入 ...
- 20169212《Linux内核原理与分析》课程总结
20169212<Linux内核原理与分析>课程总结 每周作业链接汇总 第一周作业:完成linux基础入门实验,了解一些基础的命令操作. 第二周作业:学习MOOC课程--计算机是如何工作的 ...
随机推荐
- 自学Aruba5.1.2-带宽限制
点击返回:自学Aruba之路 自学Aruba5.1.2-带宽限制 1 针对role --可以限制所有数据 注:带宽限制需要PEFNG许可证 单位可以是kbits或是mbits 可以是上传(up ...
- 【BZOJ3811】玛里苟斯(线性基)
[BZOJ3811]玛里苟斯(线性基) 题面 BZOJ 题解 \(K=1\)很容易吧,拆位考虑贡献,所有存在的位出现的概率都是\(0.5\),所以答案就是所有数或起来的结果除二. \(K=2\)的情况 ...
- 【BZOJ2299】[HAOI2011]向量(数论)
[BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...
- 【BZOJ2003】[HNOI2010]矩阵(搜索)
[BZOJ2003][HNOI2010]矩阵(搜索) 题面 懒得粘了,不难找吧. 题解 看的学长写的题解,也懒得写了 大概是这样的. 不难发现只需要确定第一行和第一列就能确定答案,而确定第一行之后每确 ...
- FreeRTOS不允许在中断服务程序和临界段中执行不确定的性的操作
举例 等待事件标志组的任务,要是在中断服务程序中设置事件标志组,但不知道当前有多少个任务在等待此事件标志,这个操作即为不确定性操作,为了不在中断服务程序中执行此不确定性操作,只在中断服务程序中给一确定 ...
- Shell基础知识(二)
对于一个shell脚本来说,第一行是 "#!/bin/bash",这条命令中的 "#!" 告诉系统该用哪一款解释器来对该脚本进行解释,后面的"/bin ...
- Looper Handler Mssage
1. 一个Handler只有一个队列;2. 在调用Handler.post(Runnable runnable)方法时,会将runnable封装成一个Message;3. 在队列执行时,会判断当前的M ...
- 深入理解JVM结构
JVM结构探究---- 1.JVM结构示意图 2.JVM运行时数据区 1)程序计数器(Program Counter Register) 程序计数器是用于存储每个线程下一步将执行的JVM指令,如该方法 ...
- display position 和float的作用和关系
1.传统布局由这三者构成. 2.position设为absolute,那么display一定是block,因此对于span来说,就可以设置高和宽了. 3.position为relative ,那么fl ...
- 1: java开发_""和null的区别
原文地址:http://www.cnblogs.com/hongten/archive/2012/11/08/java_null.html 在代码中: 1 //name可以为"", ...