一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

其实题目很水...就是一个等比数列通项公式嘛

f(0)=1

f(1)=1

f(n)=f(0)+f(1)+...+f(n-1)

==>

f(n)=2*f(n-1) (when n>=2)

==>

f(n)=2^(n-1)

class Solution {
public:
int jumpFloorII(int number){
/*
暴力写法
if(number==0){
return 1;
}
if(number==1){
return 1;
} int tot=0;
for(int i=1; i<=number; i++){
tot = tot + jumpFloorII(number-i);
}
return tot;
*/
/*
稍微写一下,发现递推式可以化简
if(number==0 || number==1){
return 1;
}
return 2*jumpFloorII(number-1);
*/
//再精简一点,这不就是一个等比数列嘛
return int(pow(2,number-1));
}
};

《剑指offer》-青蛙跳台阶II的更多相关文章

  1. 剑指offer青蛙跳台阶问题

    (1)一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. //递归方式  public static int f(int n) { //参数合法性验证 ...

  2. 《剑指offer》 跳台阶

    本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...

  3. 剑指offer:跳台阶

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...

  4. 剑指offer:跳台阶问题

    基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...

  5. Go语言实现:【剑指offer】跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...

  6. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  7. 【牛客网-剑指offer】跳台阶

    题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 考点: 递归和循环 思路: 1)利用二叉树,左孩子为跳一级,右孩子为跳两 ...

  8. 剑指Offer 变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...

  9. 剑指offer——变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳 ...

  10. 剑指OFFER之跳台阶(九度OJ1388)

    题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n< ...

随机推荐

  1. 4、Python-列表

    列表格式 # 元素可以是不同类型的 namesList = [1, 'xiaoZhang', 'xiaoHua'] print(namesList[0]) print(namesList[1]) pr ...

  2. ajax跨域原理以及jsonp使用

    jsonp介绍: JSONP(JSON with Padding)是JSON的一种“使用模式”,可用于解决主流浏览器的跨域数据访问的问题. 由于同源策略,一般来说位于 server1.example. ...

  3. vue 中this指向遇到的坑

    vue中的this指向问题 如果方法中没有使用箭头函数,记得把this赋值给另一个变量再使用.

  4. Linux最全vi命令

    1. 关于Vim vim是我最喜欢的编辑器,也是linux下第二强大的编辑器. 虽然emacs是公认的世界第一,我认为使用emacs并没有使用vi进行编辑来得高效. 如果是初学vi,运行一下vimtu ...

  5. java字符串转义,把&lt;&gt;转换成<>等字符【原】

    java字符串转义,把<>转换成<>等字符 使用的是commons-lang3-3.4 中的StringEscapeUtils类 package test; import ja ...

  6. POJ - 1836 Alignment (动态规划)

    https://vjudge.net/problem/POJ-1836 题意 求最少删除的数,使序列中任意一个位置的数的某一边都是递减的. 分析 任意一个位置的数的某一边都是递减的,就是说对于数h[i ...

  7. 关于Mac OS虚拟机下共享文件夹的方法

    1.确保左上角苹果标志的旁边是“Finder”: 2.点击"Finder": 3.选择“偏好设置设置”: 4.然后在“通用”标签下勾选“已连接服务器”: OK,搞定!   完成以上 ...

  8. Mybatis中的StatementType

    原文:http://luoyu-ds.iteye.com/blog/1517607 要实现动态传入表名.列名,需要做如下修改 添加属性statementType=”STATEMENT” 同时sql里的 ...

  9. spoj gss1 gss3

    传送门 gss1 gss3 spoj gss系列=最大字段和套餐 gss1就是gss3的无单点修改版 有区间查询和单点修改,考虑用线段树维护 我们要维护区间权值和\(s\),区间最大前缀和\(xl\) ...

  10. js 判断身份证好是否合法

    function cidInfo(sId){ var info="" //if(!/^\d{17}(\d|x)$/i.test(sId))return false; sId=sId ...