题目大意:

给定一棵\(n(n\le3000)\)个点的带边权的树,找出\(k\)个点\(A_{1\sim k}\)使得\(\sum_{1\le i<k} dis(A_i,A_i+1)\)最小。求最小值。

思路:

\(k\)个点一定是一个连通块,而且答案就是这个联通块边权和\(\times 2-\)直径。

树形DP。\(f[i][j][k]\)表示以\(i\)为根的子树,选了\(j\)个边,直径有\(k\)个端点已经确定。

时间复杂度\(\mathcal O(n^2)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
#include<climits>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=3001;
struct Edge {
int to,w;
};
std::vector<Edge> e[N];
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
e[v].push_back((Edge){u,w});
}
inline void upd(int &a,const int &b) {
a=std::min(a,b);
}
int size[N],f[N][N][3];
void dfs(const int &x,const int &par) {
size[x]=1;
f[x][0][0]=f[x][0][1]=0;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i].to,&w=e[x][i].w;
if(y==par) continue;
dfs(y,x);
for(register int i=size[x]-1;i>=0;i--) {
for(register int j=size[y]-1;j>=0;j--) {
upd(f[x][i+j+1][0],f[x][i][0]+f[y][j][0]+w*2);
upd(f[x][i+j+1][1],f[x][i][0]+f[y][j][1]+w);
upd(f[x][i+j+1][1],f[x][i][1]+f[y][j][0]+w*2);
upd(f[x][i+j+1][2],f[x][i][0]+f[y][j][2]+w*2);
upd(f[x][i+j+1][2],f[x][i][1]+f[y][j][1]+w);
upd(f[x][i+j+1][2],f[x][i][2]+f[y][j][0]+w*2);
}
}
size[x]+=size[y];
}
}
int main() {
memset(f,0x3f,sizeof f);
const int n=getint(),k=getint();
for(register int i=1;i<n;i++) {
const int u=getint(),v=getint();
add_edge(u,v,getint());
}
dfs(1,0);
int ans=INT_MAX;
for(register int i=1;i<=n;i++) {
upd(ans,f[i][k-1][2]);
}
printf("%d\n",ans);
return 0;
}

[BZOJ4987]Tree的更多相关文章

  1. BZOJ4987:Tree(树形DP)

    Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一行两个正整数n,k,表示数的顶点数和需要 ...

  2. bzoj4987: Tree(树形dp)

    Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小.   Input 第一行两个正整数n,k,表示数的顶点数和 ...

  3. bzoj4987 Tree 树上背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4987 题解 一道还不错的题咯. 很容易发现一个结论:这 \(k\) 个点构成的一定是一个连通块 ...

  4. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  5. BZOJ4987:Tree (树形DP)

    Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一行两个正整数n,k,表示数的顶点数和需要 ...

  6. 【bzoj4987】Tree 树形dp

    Description 从前有棵树. 找出K个点A1,A2,-,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一行两个正整数n,k,表示数的顶点数和需要 ...

  7. 【bzoj4987】Tree 树形背包dp

    题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...

  8. [bzoj4987]Tree_树形dp

    Tree bzoj-4987 题目大意:给定一颗n个点的有边权的树,选出k个点,使得:$\sum\limits_{i=1}^{k-1}dis_idis_j$最小. 注释:$1\le n\le 3000 ...

  9. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

随机推荐

  1. GCC选项_-Wl,-soname 及 DT_NEEDED 的解释

    -Wl选项告诉编译器将后面的参数传递给链接器. -soname则指定了动态库的soname(简单共享名,Short for shared object name) soname的关键功能是它提供了兼容 ...

  2. SharePoint 2013 文档库“样式”变了

    有朋友反馈说文档库的样式变了. 经查证,原来有人修改了视图的"样式":库设置—视图—样式,改为默认即可. 另外,如果编辑页面,编辑web部件的属性,在"杂项"勾 ...

  3. makefile 字符串处理函数

    截取自<跟我一起写Makefile> (1)  $(subst <from>, <to>, <text>) 名称: 字符串替换函数 subst 功能: ...

  4. activit流程引擎启动流程报错

    代码如下: 目录结构 ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine(); @Test public void ...

  5. centos7忘记登录密码修改

    很多时候我们都会忘记Linux root 用户的口令,下面就教大家如果忘记root口令怎么办 第1步:开机后在内核上按“e”.截图如下 按e以后会进入内核启动页面,如下图 第2步:在linux16这行 ...

  6. LINQ学习之旅 (四)

    LINQ to SQL语句之Group By/Having和Exists/In/Any/All/Contains 1.Group By/Having操作符 适用场景:分组数据,为我们查找数据缩小范围. ...

  7. D 矩阵快速幂

    Description <英雄联盟>(简称LOL)是由美国Riot Games开发,腾讯游戏运营的英雄对战网游.<英雄联盟>除了即时战略.团队作战外,还拥有特色的英雄.自动匹配 ...

  8. Kibana加载样本数据

    kibana 6.2 加载样本数据 kibana loading sample data 下载样本数据 # 莎士比亚经典作品 wget https://download.elastic.co/demo ...

  9. 065 xftp的使用

    1.xftp 一个基于 MS windows 平台的功能强大的SFTP.FTP 文件传输软件 2.下载安装 *3.在linux上安装服务 sudo yum install vsftp

  10. Python - 常用更新命令以及常见库安装

    库的安装方式一般有两种: 一. pip直接安装(或使用豆瓣源) pip install scrapy pip install -i https://pypi.douban.com/simple/ sc ...