4034: [HAOI2015]树上操作

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 4352  Solved: 1387
[Submit][Status][Discuss]

Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
 

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

 

Sample Input

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

Sample Output

6
9
13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

思路:由于有3的操作,很容易想到树链剖分,2怎么办?

   对于树链剖分来说,其子树中的节点,也是连续的,所以找子树中编号最大的;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=; ///数组大小
struct edge
{
int v,next;
} edge[N<<];
int head[N<<],edg,id,n;
/// 树链剖分 int fa[N],dep[N],son[N],siz[N]; // fa父亲,dep深度,son重儿子,siz以该点为子树的节点个数
int a[N],ran[N],top[N],tid[N],mx[N]; // tid表示边的标号,top通过重边可以到达最上面的点,ran表示标记tid
void init()
{
memset(son,-,sizeof(son));
memset(head,-,sizeof(head));
edg=;
id=;
} void add(int u,int v)
{
edg++;
edge[edg].v=v;
edge[edg].next=head[u];
head[u]=edg;
} void dfs1(int u,int fath,int deep)
{
fa[u]=fath;
siz[u]=;
dep[u]=deep;
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].v;
if(v==fath)continue;
dfs1(v,u,deep+);
siz[u]+=siz[v];
if(son[u]==-||siz[v]>siz[son[u]])
son[u]=v;
}
} void dfs2(int u,int tp)
{
tid[u]=mx[u]=++id;
top[u]=tp;
ran[tid[u]]=u;
if(son[u]==-)return;
dfs2(son[u],tp),mx[u]=max(mx[u],mx[son[u]]);
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].v;
if(v==fa[u])continue;
if(v!=son[u])
dfs2(v,v),mx[u]=max(mx[u],mx[v]);
}
} struct SGT
{
ll sum[N<<],lazy[N<<];
void pushup(int pos)
{
sum[pos]=sum[pos<<]+sum[pos<<|];
}
void pushdown(int pos,int l,int r)
{
if(lazy[pos])
{
int mid=(l+r)>>;
lazy[pos<<]+=lazy[pos];
lazy[pos<<|]+=lazy[pos];
sum[pos<<]+=lazy[pos]*(mid-l+);
sum[pos<<|]+=lazy[pos]*(r-mid);
lazy[pos]=;
}
}
void build(int l,int r,int pos)
{
lazy[pos]=;
if(l==r)
{
sum[pos]=a[ran[l]];
return;
}
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
pushup(pos);
}
void update(int L,int R,ll c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
sum[pos]+=c*(r-l+);
lazy[pos]+=c;
return;
}
pushdown(pos,l,r);
int mid=(l+r)>>;
if(L<=mid)update(L,R,c,l,mid,pos<<);
if(R>mid) update(L,R,c,mid+,r,pos<<|);
pushup(pos);
}
ll query(int L,int R,int l,int r,int pos)
{
if(L<=l&&r<=R)return sum[pos];
pushdown(pos,l,r);
int mid=(l+r)>>;
ll ans=;
if(L<=mid)ans+=query(L,R,l,mid,pos<<);
if(R>mid)ans+=query(L,R,mid+,r,pos<<|);
return ans;
}
}tree; ll up(int l,int r)
{
ll ans=;
while(top[l]!=top[r])
{
if(dep[top[l]]<dep[top[r]])swap(l,r);
ans+=tree.query(tid[top[l]],tid[l],,n,);
l=fa[top[l]];
}
if(dep[l]<dep[r])swap(l,r);
ans+=tree.query(tid[r],tid[l],,n,);
return ans;
} int main()
{
init();
int q;
scanf("%d%d",&n,&q);
for(int i=; i<=n; i++)
scanf("%d",&a[i]);
for(int i=; i<n; i++)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs1(,-,);
dfs2(,);
tree.build(,n,);
while(q--)
{
int t,x;
scanf("%d%d",&t,&x);
if(t==)
{
ll z;
scanf("%lld",&z);
tree.update(tid[x],tid[x],z,,n,);
}
else if(t==)
{
ll z;
scanf("%lld",&z);
tree.update(tid[x],mx[x],z,,n,);
}
else
printf("%lld\n",up(,x));
}
return ;
}

bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树的更多相关文章

  1. BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]

    题意: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 显然树链剖分可做 ...

  2. BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)

    题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...

  3. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  4. BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)

    BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...

  5. BZOJ 3589 动态树 (树链剖分+线段树)

    前言 众所周知,90%90\%90%的题目与解法毫无关系. 题意 有一棵有根树,两种操作.一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和. 分析 很容易看出是树链剖分+ ...

  6. BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)

    前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...

  7. bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2852  Solved: 1668[Submit][Sta ...

  8. bzoj 2157: 旅游【树链剖分+线段树】

    裸的树链剖分+线段树 但是要注意一个地方--我WA了好几次才发现取完相反数之后max值和min值是要交换的-- #include<iostream> #include<cstdio& ...

  9. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  10. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

随机推荐

  1. HDU 1527 取石子游戏 (威佐夫博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是 ...

  2. Python进阶【第九篇】装饰器

    什么是装饰器 装饰器本身就是函数,并且为其他函数添加附加功能 装饰器的原则:1.不修改被装饰对象的源代码  2.不修改被装饰对象的调用方式装饰器=高阶函数+函数嵌套+闭包 # res=timmer(t ...

  3. ES6知识整理(7)--Set和Map数据结构

    (文章会同步到博客园,技术类文章还是该让搜索引擎察觉比较好) Set构造函数 初始化一个值不重复的数组,适合做数组去重. 2种数组去重的方法: 这里再说下Array.from(),表示以一个类数组|| ...

  4. django ORM常用查询条件

    假设有一个模型 class Article(models.Model): title=models.CharField(max_length=50) content=models.TextField( ...

  5. TNS-12537,TNS-12560,TNS-00507 Linux Error: 29: Illegal seek解决

    下午有个测试环境测试人员反馈oracle监听起不来,一启动就报错,还生成了core文件.如下: [oracle@localhost ~]$ lsnrctl start LSNRCTL for Linu ...

  6. MySql数据库概念

    一.什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的建立在计算机存储设备上的仓库. 简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行 ...

  7. 【题解】Luogu P4391 [BOI2009]Radio Transmission 无线传输

    原题传送门 这题需要用到kmp匹配 推导发现: 设循环节的长度为x,那么kmp数组前x个都是0,后面kmp[x+n]=n 先求出kmp数组 答案实际就是len-kmp[len] #include &l ...

  8. python简说(一)if,for等

    一.python简说 python可以用于自动化测试.web开发.数据分析.AI python.自动化运维,第三方模块最多的一个语言. 编译型语言 c.c++ 要运行,先要编译,编译成二进制的. 解释 ...

  9. 网络对抗——web基础

    网络对抗--web基础 实践内容 (1)Web前端HTML (2)Web前端javascipt (3)Web后端:MySQL基础:正常安装.启动MySQL,建库.创建用户.修改密码.建表 (4)Web ...

  10. Codeforces 844D Interactive LowerBound - 随机化

    This is an interactive problem. You are given a sorted in increasing order singly linked list. You s ...