关于 k 进制线性基
本质还是高斯消元,使其成为上三角矩阵。但是 \(k\) 不一定是质数。
但我们不需要保证已有数字不改变,只要维护的是一个上三角矩阵就行。所以我们可以利用更相减损让其中一个向量的最高位 \(= 0\) 。然后插入即可。正确性的证明同二进制线性基。
然后来到了查询环节。在二进制下,异或两次就等于没异或,所以容易判断。但是在这里,一个数的异或次数是不固定的。更糟的是,很有可能有多种方式取得最大值。
举个例子。当前 \(k = 8\) ,最高位 \(= 6\) ,初始数字 \(x = 0\) 。显然异或一次得到 \(6\) 是最好的。但是,异或五次同样可以得到 \(6\) ,而且对后面有影响!
这里就要用一个类似完全背包的操作了。因为,我们确信,如果最高位是 \(v(v\ne 0)\),那么异或这个数 \(\frac{k}{\gcd(k,v)}\) 次,在当前位的异或值不会变。
那么,只要在线性基里额外插入一个当前位置的数的 \(\frac{k}{\gcd(k,v)}\) 次异或值,就会自动完成对后面位置的修正。
最后算一下时间复杂度:
首先计算插入,不妨设 \(k\le x\),否则整个算法是 \(\mathcal O(q+\log x)\) 的。辗转相除最多 \(\mathcal O(\log_2 k)\) 次,每次要 \(\mathcal O(\log_kx)\) 把一整行的信息全部修改,并且每个数字必然从头到尾访问所有 \(\mathcal O(\log_k x)\) 个元素(因为有了上面的 “修正法案”,插入成功也会继续往下尝试插入),复杂度 \(\mathcal O(\log_2 x\cdot \log_k x)\) 。
然后计算查询,仍然设 \(k\le x\),否则整个算法是 \(\mathcal O(q\log x)\) 的。对于每一位,我们要计算当前位可以得到的最小值,这需要 \(\mathcal O(\log_k x)\) 的行向量操作。一共 \(\mathcal O(\log_k x)\) 行,总复杂度 \(\mathcal O(\log_k^2x)\) 。
「IOI2021国家队选拔」术数树
点击查看代码
#include <bits/stdc++.h>
using namespace std;
int q, k, m;
struct Vector {
int a[31];
Vector(int _x = 0) {
memset(a, 0, sizeof(a));
for (int i = 0; _x; i++) {
a[i] = _x % k;
_x /= k;
}
}
inline int &operator[](int t) { return a[t]; }
inline Vector operator+(Vector b) {
Vector res;
for (int i = 0; i < m; i++) res[i] = (a[i] + b[i]) % k;
return res;
}
inline Vector operator-(Vector b) {
Vector res;
for (int i = 0; i < m; i++) res[i] = (a[i] - b[i] + k) % k;
return res;
}
inline Vector operator*(int b) {
Vector res;
for (int i = 0; i < m; i++) res[i] = 1ll * b * a[i] % k;
return res;
}
} bas[31], dis[200005];
int gcd(int x, int y) { return y ? gcd(y, x % y) : x; }
void exgcd(int a, int b, int &x, int &y) {
if (!b) {
x = 1;
y = 0;
return;
}
exgcd(b, a % b, y, x);
y -= a / b * x;
}
inline int Inv(int x) {
int a, b;
exgcd(x, k, a, b);
return (a + k) % k;
}
inline void insert(Vector x) {
for (int i = m - 1; ~i; i--) {
if (!x[i])
continue;
if (!bas[i][i]) {
bas[i] = x * Inv(x[i]);
x = x * (k / gcd(k, x[i]));
}
while (x[i]) {
int t = bas[i][i] / x[i];
bas[i] = bas[i] - x * t;
swap(x, bas[i]);
}
}
}
inline Vector query(Vector x) {
for (int i = m - 1; ~i; i--) {
if (!bas[i][i])
continue;
x = x - bas[i] * (x[i] / bas[i][i]);
}
return x;
}
int fa[19][200005], dep[200005];
inline int lca(int x, int y) {
if (dep[x] < dep[y])
swap(x, y);
for (int i = 18; ~i; i--)
if (dep[fa[i][x]] >= dep[y])
x = fa[i][x];
if (x == y)
return x;
for (int i = 18; ~i; i--) {
if (fa[i][x] != fa[i][y])
x = fa[i][x], y = fa[i][y];
}
return fa[0][x];
}
int tot = 1;
inline Vector dist(int x, int y) {
int lc = lca(x, y);
return dis[x] + dis[y] - dis[lc] * 2;
}
int main() {
freopen("city.in", "r", stdin);
freopen("city.out", "w", stdout);
scanf("%d%d%d", &q, &k, &m);
for (int i = 0; i < 19; i++) fa[i][1] = 1;
while (q--) {
int op, x, y, v;
scanf("%d", &op);
if (op == 1) {
scanf("%d%d", &x, &v);
insert(Vector(v) + Vector(v));
dis[++tot] = dis[x] + Vector(v);
dep[tot] = dep[x] + 1;
fa[0][tot] = x;
for (int i = 1; i < 19; i++) fa[i][tot] = fa[i - 1][fa[i - 1][tot]];
} else if (op == 2) {
int x, y, v;
scanf("%d%d%d", &x, &y, &v);
insert(dist(x, y) + Vector(v));
} else {
scanf("%d%d", &x, &y);
Vector tmp = query(dist(x, y));
long long res = 0;
for (int i = m - 1; ~i; i--) res = k * res + tmp[i];
printf("%lld\n", res);
}
}
return 0;
}
关于 k 进制线性基的更多相关文章
- CF459C Pashmak and Buses (构造d位k进制数
C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 seco ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 快速沃尔什变换(FWT)及K进制异或卷积&快速子集变换(FST)讲解
前言: $FWT$是用来处理位运算(异或.与.或)卷积的一种变换.位运算卷积是什么?形如$f[i]=\sum\limits_{j\oplus k==i}^{ }g[j]*h[k]$的卷积形式(其中$\ ...
- 洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...
- K进制数
题目描述 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 例: 1010 ...
- 【洛谷p1066】2^k进制数
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...
- Ecust DIV3 k进制 【暴力不断优化】
K进制 Description 给定一个正整数n,请你判断在哪些进制下n的表示恰好有2位是1,其余位都是0. Input 输入第一行为整数TT,表示有TT组数据(1 \le T \le 50)(1≤T ...
- 一本通1649【例 2】2^k 进制数
1649:[例 2]2^k 进制数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以 ...
随机推荐
- 使用 Bitnami PostgreSQL Docker 镜像快速设置流复制集群
bitnami-docker-postgresql 仓库 源码:bitnami-docker-postgresql https://github.com/bitnami/bitnami-docker- ...
- Tensorflow 窗口时间序列数据的处理
Tensorflow 时间序列数据的处理 数据集简介 数据来源:Kaggle Ubiquant Market Prediction 数据集描述了多个投资项目在一个时间序列下的300个匿名特征(&quo ...
- GitHub 桌面版 v3.0 新特性「GitHub 热点速览」
新版本一般意味着更强的功能特性,比如 GitHub Desktop v3.0.虽然未发布新版本,但本周收录的 7 个开源项目颇有"新版"味.比如,破解(恢复)密码能力 Max 的 ...
- Spring Cloud Feign+Hystrix自定义异常处理
开启Hystrix spring-cloud-dependencies Dalston版本之后,默认Feign对Hystrix的支持默认是关闭的,需要手动开启. feign.hystrix.enabl ...
- SSO 方案演进
背景介绍 随着业务与技术的发展,现今比以往任何时候都更需要单点登录 SSO 身份验证. 现在几乎每个网站都需要某种形式的身份验证才能访问其功能和内容. 随着网站和服务数量的增加,集中登录系统已成为一种 ...
- 如何使用Python实现图像融合及加法运算?
摘要:本篇文章主要讲解Python调用OpenCV实现图像融合及加法运算,包括三部分知识:图像融合.图像加法运算.图像类型转换. 本文分享自华为云社区<[Python图像处理] 五.图像融合.加 ...
- 【FAQ】分析服务导出的事件数据和概览页面展示的数据不一致该如何解决?
华为分析服务面向开发者提供两种数据展现方式:(1)事件数据下载,开发者可以将事件数据下载后导入到自有的分析系统中:(2)直接在AGC概览页面查看用户数和事件数. 问题描述 某开发者想将事件数据导入到自 ...
- windows 文件hash校验,字符串加密,base64转换工具
对下载的文件使用hash校验验证文件完整性 1 import hashlib 2 def md5(): 3 md5_value = hashlib.md5() 4 with open('C:\Inte ...
- OpenStack 安装 Keystone
OpenStack 安装 Keystone 本篇主要记录一下 如何安装 openstack的 第一个组件 keystone 认证授权组件 openstack 版本 我选的是queens 版本 1.Op ...
- Nacos源码系列—订阅机制的前因后果(下)
点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你,很高兴能够成为你的朋友. 项目源码地址:公众号回复 nacos,即可免费获取源码 事件发布 在上一节中我们讲解了在Noti ...