NC207040 丢手绢

题目

题目描述

“丢丢手绢,轻轻地放在小朋友的后面,大家不要告诉她,快点快点抓住她,快点快点抓住她。”

牛客幼儿园的小朋友们围成了一个圆圈准备玩丢手绢的游戏,但是小朋友们太小了,不能围成一个均匀的圆圈,即每个小朋友的间隔可能会不一致。为了大家能够愉快的玩耍,我们需要知道离得最远的两个小朋友离得有多远(如果太远的话牛老师就要来帮忙调整队形啦!)。

因为是玩丢手绢,所以小朋友只能沿着圆圈外围跑,所以我们定义两个小朋友的距离为沿着圆圈顺时针走或者逆时针走的最近距离。

输入描述

第一行一个整数 \(N\) ,表示有 \(N\) 个小朋友玩丢手绢的游戏。

接下来的第 \(2\) 到第 \(n\) 行,第 \(i\) 行有一个整数,表示第 \(i-1\) 个小朋友顺时针到第 \(i\) 个小朋友的距离。

最后一行是第 \(N\) 个小朋友顺时针到第一个小朋友的距离。

输出描述

输出一个整数,为离得最远的两个小朋友的距离。

示例1

输入

3
1
2
3

输出

3

备注

\(2 \leq N \leq 100000\)

距离和(圆圈周长)小于等于 \(2147483647\)

题解

思路

知识点:尺取法。

假设孩子 \(i\) 到孩子 \(j\) 的某时针距离过半,则其实际距离是总距离减去这个距离,并且一定是反向最长距离,所以只需要枚举到距离过半就行。

并且满足之后 \(i+1\) 后,不需要将 \(j\) 指向位置复位到 \(i+2\) ,因为 \(j\) 在原位的位置一定比 \(i\) 到 \(j\) 距离小,一定不是最大距离。

此时有两个方法:枚举 \([1,n]\) 每个起点的单方向最大值(成环);枚举 \([1,n]\) 每个起点,且右端点不环绕数组的双向最大值。

个人认为环状求取单方向距离,从而等价得到双向距离更好。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

int a[100007];
int len; int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int n;
cin>>n;
for(int i = 0;i<n;i++){
cin>>a[i];
len += a[i];
}
int ans = 0;
int sum = 0;
int l = 0,r = 0;
///个人认为环状求取单方向距离,从而等价得到双向距离更好
while(l<n){
while(sum<len/2){///不能等于因为要刚好过半,刚好等于一半时,再加会小,就丢失了一半的可能性
sum+=a[r++%n];///r必须成环因为,下面判断方式只能枚举一个点可能最大距离中的逆时针最大距离,不成环枚举到对称点就无法得到相对的顺时针最大距离
}
ans = max(ans,min(sum,len-sum));///min(sum,len-sum)因为sum等于len/2时,可能还是会小于len的一半,此时取sum;sum大于len/2时,sum一定大于len的一半,此时取sum-len
sum -= a[l++];
}
/*
while(l<n){
while(r<n && sum <= len/2){///算上等于sum最后一定超过一半
sum+=a[r++];///此种判断可以不成环,因为每次都算了一个点到两种可能点的最大距离,那么R回到1以后实际上得到距离是一样的就不用再看了
}
if(sum>len/2) ans = max(ans,max(len-sum,sum-a[r-1]));///不成环就需要在最后判断sum有没有超过一半,为了防止R终止以后sum小于一半造成错误答案
sum -= a[l++];
}*/
cout<<ans<<'\n';
return 0;
}

NC207040 丢手绢的更多相关文章

  1. python玩丢手绢问题,出局的顺序

    # 丢手绢问题# 游戏规则: 有N个小朋友玩丢手绢游戏,做成一圈,从第一个小朋友开始数数,从一开始数,数到指定数字的小朋友要出列,然后下一个小朋友继续从1开始数,依次类推,算出最后一个留下来的小朋友是 ...

  2. HOJ———丢手绢

    hide handkerchief Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...

  3. 丢手绢问题(约瑟夫问题)的python实现

    约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉. def fnA(p, personNum, cnt): times = cnt // pe ...

  4. Josephus problem(约瑟夫问题,丢手绢问题)

    约瑟夫问题 约瑟夫环问题是一个数学应用题:已知n个人(以编号1,2,3.....,n)围坐在一张圆桌的周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列 ...

  5. ZJNU 1531 - 丢手绢--中级

    可以将相同的人数分块存在数组gp中先 例如RRGGGRBBBBRR 则gp[1~5]={2,3,1,4,2} 首先可以知道,如果要让没有相邻的相同,只需要每个gp[i]/2向下取整即可得出最少需要改变 ...

  6. 数学--数论--HDU 2104 丢手绢(离散数学 mod N+ 剩余类 生成元)+(最大公约数)

    The Children's Day has passed for some days .Has you remembered something happened at your childhood ...

  7. Java 解决约瑟夫问题

    约瑟夫问题(有时也称为约瑟夫斯置换,是一个出现在计算机科学和数学中的问题.在计算机编程的算法中,类似问题又称为约瑟夫环.又称“丢手绢问题”.) 有这样一个故事,15个教徒和15个非教徒在深海遇险必须讲 ...

  8. 约瑟夫问题(Josephus Problem)的两种快速递归算法

    博文链接:http://haoyuanliu.github.io/2016/04/18/Josephus/ 对,我是来骗访问量的!O(∩_∩)O~~ 约瑟夫问题(Josephus Problem)也称 ...

  9. 约瑟夫问题-Josephus--及实例说明

    //---我保证所有的代码都已经通过测试---// 类似约瑟夫的问题又称为约瑟夫环.又称“丢手绢问题”. 这个问题来自于这样的一个关于著名犹太历史学家 Josephus传说: 在罗马人占领乔塔帕特后, ...

随机推荐

  1. vulnhub devguru渗透笔记

    devguru渗透笔记 信息收集 kali ip 目标ip 首先我们扫描一下开放端口 nmap -A -p- 192.168.20.143 Starting Nmap 7.91 ( https://n ...

  2. java class 文件格式解析

    前言 大约5年前,想研究javaassistant,cglib等字节码操作的相关类库,来对class进行增强,当要到要操作字节码的时候,发现无法继续下去了,只能放弃. 学习jvm字码,需要理解clas ...

  3. Android四大组件——Activity——Activity的生命周期

    Activity状态: 每个Activity在其生命周期中最多可能有四种状态 1.运行状态:处于栈顶时.初次创建处于栈顶时依次调用:onCreate(),onStart(),onResume().由不 ...

  4. 【Hadoop】ZooKeeper组件

    目录 一.配置时间同步 二.部署zookeeper(master节点) 1.使用xftp上传软件包至~ 2.解压安装包 3.创建 data 和 logs 文件夹 4.写入该节点的标识编号 5.修改配置 ...

  5. python mysqldb 报错: ProgrammingError: must be real number, not str 解决

    代码: sql = 'insert into book(book_name,book_desc,origin_price,publish_id,tag_id,book_img) values(%s,% ...

  6. mybatis添加代码出现是第几条数据

  7. 你不知道的 Linux 使用技巧

    开源Linux 一个执着于技术的公众号 1.快速跳转命令 - z 要是每次都要进入一个目录很深的文件夹下,像下面这样: # cd /root/py/auto/fabric 每次都要输入好多个目录名是不 ...

  8. 【题解】2021CSP-J2T3网络连接

    目录 题目链接 题目分析 是否重复 读入提取数 非法情况判断 参考代码 题目链接 题目分析 map不会冲突!!不一定要like代码中那样加-号! 模拟,算不上大, 首先,我们想想整个流程: 现在,我们 ...

  9. Blazor和Vue对比学习(基础1.5):双向绑定

    这章我们来学习,现代前端框架中最精彩的一部分,双向绑定.除了掌握原生HTML标签的双向绑定使用,我们还要在一个自定义的组件上,手撸实现双向绑定.双向绑定,是前两章知识点的一个综合运用(父传子.子传父) ...

  10. 启动mysql报错ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (111)

    mysql之前还好好的,突然就启动不了了,我也很纳闷,原来是服务没有启动 netstat -ntlp 后,发现并没有启动 于是我试着启动mysql service mysqld start 查看了my ...