uoj450 【集训队作业2018】复读机(生成函数,单位根反演)
uoj450 【集训队作业2018】复读机(生成函数,单位根反演)
题解时间
首先直接搞出单个复读机的生成函数 $ \sum\limits_{ i = 0 }^{ k } [ d | i ] \frac{ x^{ i } }{ i! } $ 。
容易想到直接上单位根反演:
\sum\limits_{ i = 0 }^{ k } [ d | i ] \frac{ x^{ i } }{ i! }
& = \sum\limits_{ i = 0 }^{ k } \frac{ 1 }{ d } \sum\limits_{ j = 0 }^{ d - 1 } \omega_{ d }^{ ij } \frac{ x^{ i } }{ i! } \\
& = \frac{ 1 }{ d } \sum\limits_{ j = 0 }^{ d - 1 } \sum\limits_{ i = 0 }^{ k } \frac{ ( \omega_{ d }^{ j } x )^{ i } }{ i! } \\
& = \frac{ 1 }{ d } \sum\limits_{ j = 0 }^{ d - 1 } e^{ ( \omega_{ d }^{ j } x )^{ i } }
\end{aligned}
\]
然后答案就是 $ [ x^{ n } ] ( \frac{ 1 }{ d^{ k } } ( \sum\limits_{ j = 0 }^{ d - 1 } e^{ \omega_{ d }^{ j } x } )^{ k } ) $ 。
由于 $ d \le 3 $ ,所以直接大力二项式定理,时间复杂度 $ O( d k^{d-1} \log{ k } ) $ 。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
template<typename TP,typename... Args>inline void read(TP& t,Args&... args){read(t),read(args...);}
namespace RKK
{
const int N=500011;
const int mo=19491001;
const int g=7,om=18827933;
void doadd(int &a,int b){if((a+=b)>=mo) a-=mo;}int add(int a,int b){return (a+=b)>=mo?a-mo:a;}
void dodec(int &a,int b){doadd(a,mo-b);}int dec(int a,int b){return add(a,mo-b);}
void domul(int &a,int b){a=1ll*a*b%mo;}int mul(int a,int b){return 1ll*a*b%mo;}
int fpow(int a,int p){int ret=1;while(p){if(p&1) domul(ret,a);domul(a,a),p>>=1;}return ret;}
int inv[N],fac[N],ifac[N];
void init()
{
inv[1]=1;for(int i=2;i<=500000;i++) inv[i]=mul(inv[mo%i],mo-mo/i);
for(int i=fac[0]=1;i<=500000;i++) fac[i]=mul(fac[i-1],i);
for(int i=ifac[0]=1;i<=500000;i++) ifac[i]=mul(ifac[i-1],inv[i]);
}
int C(int n,int m){if(n<m||n<0||m<0) return 0;return mul(fac[n],mul(ifac[n-m],ifac[m]));}
int n,m,d,ans;
int main()
{
init();
read(n,m,d);
switch(d)
{
case 1:
ans=fpow(m,n);
break;
case 2:
for(int i=0;i<=m;i++) doadd(ans,mul(C(m,i),fpow(dec(i*2,m),n)));
break;
case 3:
for(int i=0;i<=m;i++)for(int j=0;i+j<=m;j++)
doadd(ans,mul(mul(C(m,i),C(m-i,j)),fpow(add(m-i-j,add(mul(om,i),mul(mul(om,om),j))),n)));
break;
}
domul(ans,fpow(inv[d],m));
printf("%d\n",ans);
return 0;
}
}
int main(){return RKK::main();}
uoj450 【集训队作业2018】复读机(生成函数,单位根反演)的更多相关文章
- uoj #450[集训队作业2018]复读机
传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...
- 【UOJ#450】[集训队作业2018] 复读机
题目链接 题目描述 群里有\(k\)个不同的复读机.为了庆祝平安夜的到来,在接下来的\(n\)秒内,它们每秒钟都会选出一位优秀的复读机进行复读.非常滑稽的是,一个复读机只有总共复读了\(d\)的倍数次 ...
- uoj#450. 【集训队作业2018】复读机(单位根反演)
题面 传送门 题解 我的生成函数和单位根反演的芝士都一塌糊涂啊-- \(d=1\),答案就是\(k^n\)(因为这里\(k\)个复读机互不相同,就是说有标号) \(d=2\),我们考虑复读机的生成函数 ...
- 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)
[UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...
- UOJ #449. 【集训队作业2018】喂鸽子
UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- UOJ#418. 【集训队作业2018】三角形
#418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...
- 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物
T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...
随机推荐
- redis(一)-----初识redis
Redis是一种基于键值对(key-value)的NoSQL数据库 因为Redis会将所有数据都存放在内存 中,所以它的读写性能非常惊人.不仅如此,Redis还可以将内存的数据利 用快照和日志的形式保 ...
- 暑假撸系统6- Thymeleaf ajax交互!
本来用Thymeleaf也没想着深度使用ajax,就是用也是非常传统的ajax方式提交然后js控制修改下变量.闲来无事的时候看Thymeleaf的教程发现一哥们的实现方式,以及实现思路,堪称惊奇,先说 ...
- 使用并发 ssh 连接来提升捞日志脚本执行效率
问题背景 公司有个简单粗暴的日志服务,它部署在多台机器实例上,收集的日志记录在每台机器本地硬盘,写一个小时自动切换日志文件,硬盘空间写满了自动回卷,大约可以保存两三天的历史数据.为什么说它粗暴呢?原来 ...
- 菜鸟到大神之多图预警——从 RAID 到分布式系统中的副本分布
我们知道,在面对大规模数据的计算和存储时,有两种处理思路: 垂直扩展(scale up):通过升级单机的硬件,如 CPU.内存.磁盘等,提高计算机的处理能力. 水平扩展(scale out):通过添加 ...
- python2批量改密码
客户端代码: 如果注释最下面三行socket发送,可以直接在本机修改密码不发送数据到服务端. # -*- coding: utf-8 -*- #author:Guoyabin import rando ...
- Python3+PyMysql
原文地址(持续更新ing-):https://www.caituotuo.top/6bf90683.html 1. 安装PyMySQL pip3 install PyMySQL 2. 创建数据库 # ...
- 技术小白的也能独立完成数据分析,这款BI系统你值得拥有
是否有很多小白跟我一样,不会编程代码,又觉得excel操作太繁琐了,一直苦苦不知道要怎么做数据分析.前段时间我使用了一款bi系统,简直太方便了!拖拉拽就能制作分析图表.点击就能应用智能分析功能,如果这 ...
- PyTorch 中的乘法:mul()、multiply()、matmul()、mm()、mv()、dot()
torch.mul() 函数功能:逐个对 input 和 other 中对应的元素相乘. 本操作支持广播,因此 input 和 other 均可以是张量或者数字. 举例如下: >>> ...
- 【windows 操作系统】进程间通信(IPC)简述|无名管道和命名管道 消息队列、信号量、共享存储、Socket、Streams等
一.进程间通信简述 每个进程各自有不同的用户地址空间,任何一个进程的全局变量在另一个进程中都看不到,所以进程之间要交换数据必须通过内核,在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进 ...
- Oracle之集合运算
交集 INTERSECT :取两个查询结果集的共有部分 SELECT DEPTNO FROM EMP INTERSECT SELECT DEPTNO FROM DEPT; 补集 MINUS :用第 ...