Tarjan系列!我愿称Tarjan为爆搜之王!

1.Tarjan求LCA

利用并查集在一遍DFS中可以完成所所有询问。是一种离线算法。

遍历到一个点时,我们先将并查集初始化,再遍历完一个子树之后,将该子树的根的父亲指向当前点。

最后在回溯的时候给询问的答案更新一下,枚举一下 \(v\in [1,n]\) 的点,看是否有询问,如果有询问更新一下 \(LCA[u][v]=LCA[v][u]=find(v);\) 但是前提是 \(v\) 已经被访问。

我们优化一下枚举的点,放入vector优化一下,就是 \(O(n+m)\) 的复杂度了。

测试用题:

T1

T2

T1 Code:

但是经过事实证明,有速度排行:

树剖 < st表 < 倍增 < Tarjan

什么东西天下第一不用我多说了吧。

#include<bits/stdc++.h>
#define ll long long
#define db double
#define filein(a) freopen(#a".in","r",stdin)
#define fileot(a) freopen(#a".out","w",stdout)
template<class T>
inline void read(T &s){
s=0;char ch=getchar();bool f=0;
while(ch<'0'||'9'<ch) {if(ch=='-') f=1;ch=getchar();}
while('0'<=ch&&ch<='9') {s=s*10+(ch^48);ch=getchar();}
s=f?-s:s;
if(ch=='.'){
db p=0.1;ch=getchar();
while('0'<=ch&&ch<='9') {s=s+(ch^48)*p;p*=0.1;ch=getchar();};
}
}
using std::vector;
const int N=5e5+1;
int n,m,rt;
vector<int>head,nxt;
struct Edge{
int u,v;
};vector<Edge>to;
inline void join(int u,int v){
nxt.push_back(head[u]);
head[u]=to.size();
to.push_back({u,v});
}
struct ques{
int id,x;
};
vector<ques>qu[N];
int ans[N];
int fa[N];
int find(int x){
return x==fa[x]?x:fa[x]=find(fa[x]);
}
bool vis[N];
void dfs(int u){
fa[u]=u;
vis[u]=1;
for(int i=head[u];~i;i=nxt[i]){
int v=to[i].v;
if(vis[v]) continue;
dfs(v);
fa[v]=u;
}
for(auto it:qu[u]){
int id=it.id,x=it.x;
if(vis[x]){
ans[id]=find(fa[x]);
}
}
}
int main(){
filein(b);fileot(b);
read(n);read(m);read(rt);
head.resize(n+1,-1);
for(int i=1;i<n;++i){
int u,v;read(u);read(v);
join(u,v);join(v,u);
}
for(int i=1;i<=m;++i){
int u,v;read(u);read(v);
qu[u].push_back({i,v});
qu[v].push_back({i,u});
}
dfs(rt);
for(int i=1;i<=m;++i){
printf("%d\n",ans[i]);
}
return 0;
}

T2:我们考虑树上差分即可,这个我在之前的博客提到过了,就不多说了。

树上差分

2.Tarjan求割点、割边、强连通分量

概念

割点:删除点 \(u\) 后使得连通图变为非连通图,该点为割点。

如果一个图没有割点,那么叫重连通图,每个顶点间至少2条路径(除非点数<3)。

强连通指有向图中的连通图,无向图中叫连通图。

割点

然后Tarjan可以在DFS中完成割点查找。我们给点赋予时间戳 \(dfn\) ,就得到了深度优先生成树。

我们称能到达 \(dfn\) 小于自己的边叫回边。

而对于一个点 \(u\) 要么是根要么非根。先考虑 \(u\) 为根,若其为割点,其满足拥有两个及以上的子树。这个结论是显然的,可以用链和一颗根有多个儿子的树来举例分析。

如果 \(u\) 不是根,\(u\) 为割点,那么其子树中存在有的点没有到达 \(u\) 祖先的回边。

因为没有回边到达 \(u\) 以上,那么删除这个点 \(u\) 之后必定能使得图非联通。(具体就是这个点出不去了)

考虑怎么判断这个条件。我们用时间戳 \(dfn\) 和最低时间戳 \(low\) 来辅助。

其中:

\[low[u]=min\{dfn[u],min\{low[v]|v是u的儿子\},min\{dfn[v]|(u,v)为一条回边\}\}
\]

那为什么 \(low\) 取不到 \(min\{low[v]|(u,v)为一条回边\}\) ? 原因其实很简单,首先是要根据其定义,然后就考虑为什么这样设计。比如说当我们求割点的时候,割点可以通过回边到达一个 \(dfn\) 更小的点,但是我们既然删掉了这个点那就不影响了。如果这是其子树正好有到达 \(u\) 点的回边,如果随着其 \(low\) 跳到那个更低的点,那么结果是有问题的,这是会把 \(u\) 误判为非割点。

再考虑这样设计为什么不会错,因为我们这样已经足够判断其是否会通向其他子树了。

  • 在 \(u\) 非 \(dfn\) 树上的根时,若存在 \(v\) 是 \(u\) 的儿子,使 \(dfn[u]<=low[v]\) ,那么 \(u\) 是割点。

考虑反证,若 \(low[v]<dfn[u]\) ,那么子树中必定有向 \(u\) 祖先的回边,因此 \(u\) 非割点。

然后考虑一下根有多个子树的情况即可。

#include<bits/stdc++.h>
#define ll long long
#define db double
#define filein(a) freopen(#a".in","r",stdin)
#define fileot(a) freopen(#a".out","w",stdout)
template<class T>
inline void read(T &s){
s=0;char ch=getchar();bool f=0;
while(ch<'0'||'9'<ch) {if(ch=='-') f=1;ch=getchar();}
while('0'<=ch&&ch<='9') {s=s*10+(ch^48);ch=getchar();}
s=f?-s:s;
if(ch=='.'){
db p=0.1;ch=getchar();
while('0'<=ch&&ch<='9') {s=s+(ch^48)*p;p*=0.1;ch=getchar();};
}
}
using std::vector;
const int N=2e4+1;
vector<int>head,nxt;
struct Edge{
int u,v;
};vector<Edge>to;
int n,m;
inline void join(int u,int v){
nxt.push_back(head[u]);
head[u]=to.size();
to.push_back({u,v});
}
int idx;
int dfn[N],low[N];bool cut[N];
void dfs(int u,int f){
dfn[u]=low[u]=++idx;
int child=0;
for(int i=head[u];~i;i=nxt[i]){
int v=to[i].v;
if(!dfn[v]){
dfs(v,u);
if(dfn[u]<=low[v] and u!=f){
cut[u]=1;
}
low[u]=std::min(low[u],low[v]);
if(u==f) ++child;
}else if(v!=f){
low[u]=std::min(low[u],dfn[v]);
}
}
if(child>=2 and u==f){
cut[u]=1;
}
}
int main(){
filein(b);fileot(b);
read(n);read(m);
head.resize(n+1,-1);
for(int i=1;i<=m;++i){
int u,v;read(u);read(v);
join(u,v);join(v,u);
}
for(int i=1;i<=n;++i){
if(!dfn[i]){
idx=0;
dfs(i,i);
}
}
int ans=0;
for(int i=1;i<=n;++i){
if(cut[i]) ++ans;
}
printf("%d\n",ans);
for(int i=1;i<=n;++i){
if(cut[i]){
printf("%d ",i);
}
}putchar('\n');
return 0;
}

割边

删掉一条边后连通图变为非联通的,那么这条边称为割边(或桥)。

在 \(dfs\) 树上,\(u\) 为 \(v\) 的父亲节点,那么 \((u,v)\) 是割边的条件为:\(u\) 到 \(v\) 的边不是重边且 \(v\) 及其子孙节点中没有向 \(u\) 及其祖先的回边。

因为这次删的是边,而不是点,所以不能反到 \(u\),不等式不能取到等号。

类似的,若 \(dfn[u]<low[v]\),那么 \((u,v)\) 是割边。

由于没有模板再加上和上面的类似,我就只写核心代码了。

void dfs(int u){
dfn[u]=low[u]=++idx;
for(int i=head[u];~i;i=nxt[i]){
int v=to[i].v;
if(!dfn[v]){
dfs(v);
if(dfn[u]<low[v]){
cut[i]=1;
}
low[u]=std::min(low[u],low[v]);
}else if(v!=f){
low[u]=std::min(low[u],dfn[v]);
}
}
}

割点与割边

  • 两个割点之间的边是割边吗。割边的两个端点是割点吗。

举反例即可。第一很显然是错的,因为我们断掉一个点和断掉一条边是不等价的,上面我们论证 \(low\) 的时候举了这样的例子,就不多赘述了。第二个我们发现也是有问题的,虽然我们断点的时候肯定会断掉这条边,显然如果那边的点在删完这个点之后删空了,那么也是不满足的。

强连通分量

有向图各个节点互相可达,那么叫做强连通分量。

一遍DFS求出。若有节点 \(u\) 满足 \(low[u]==dfn[u]\) 那么其子树不可能到达其祖先。那么这个 \(u\) 为一个强连通分量在 \(dfs\) 搜索树中的根。其中有多个强连通分量,其子树与一个强连通分量不一定完全相等。我们递归将其下的强连通分量记录并去除,最后以 \(a\) 为根又有一个强连通分量。

其下的强连通分量按照相同方法找到。

我们用栈来找出一个强连通分量中的点(弹出其下的强连通分量中的点,一直弹到弹掉其下强连通分量的根为止)。

代码我们和缩点一起给出。

缩点

强连通分量内可以进行缩点,然后形成DAG(有向无环图)。能有更多优秀的性质。

缩点我们给同一个强连通分量内的点染成同一色,然后检查每条边的两边的点的颜色。同色忽略,异色就对于两个颜色建一条边即可完成缩点。

以模板题T1为例

我们这个时候处理回边的方法需要修改一下。因为是有向图。我们设立一个标记看一个点是否在栈中,如果在栈中那么其为回边,否则不为回边(因为对方已经被分入一个强连通分量中)。

缩点后变为DAG,就可以使用拓扑排序了。

基本的拓扑排序不难,看一眼就会了

拓扑排序

T1

T2

#include<bits/stdc++.h>
#define ll long long
#define db double
#define filein(a) freopen(#a".in","r",stdin)
#define fileot(a) freopen(#a".out","w",stdout)
template<class T>
inline void read(T &s){
s=0;char ch=getchar();bool f=0;
while(ch<'0'||'9'<ch) {if(ch=='-') f=1;ch=getchar();}
while('0'<=ch&&ch<='9') {s=s*10+(ch^48);ch=getchar();}
s=f?-s:s;
if(ch=='.'){
db p=0.1;ch=getchar();
while('0'<=ch&&ch<='9') {s=s+(ch^48)*p;p*=0.1;ch=getchar();};
}
}
using std::vector;
const int N=1e4+1,M=1e5+1;
int n,m;
int a[N];
vector<int>head,nxt;
struct Edge{
int u,v,w;
};vector<Edge>to;
Edge e[M];
inline void join(int u,int v){
nxt.push_back(head[u]);
head[u]=to.size();
to.push_back({u,v});
}
int idx;
int dfn[N],low[N];
int st[N],top;
int col[N];
int num;
int sum[N];
bool ink[N];
void dfs(int u){
dfn[u]=low[u]=++idx;
st[++top]=u;
ink[u]=1;
for(int i=head[u];~i;i=nxt[i]){
int v=to[i].v;
if(!dfn[v]){
dfs(v);
low[u]=std::min(low[u],low[v]);
}else if(ink[v]){
low[u]=std::min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
++num;
while(1){
col[st[top] ]=num;
sum[num]+=a[st[top] ];
ink[st[top] ]=0;
//printf("%d ",st[top]);
if(st[top]==u){
--top;
//printf("(%d)",sum[num]);
//putchar('\n');
break;
}
--top;
}
}
}
int res=0;
void dfs2(int u){
res+=sum[u];
for(int i=head[u];~i;i=nxt[i]){
int v=to[i].v;
dfs(v);
}
}
int dp[N];
int ind[N];
std::queue<int>q;
int ans=0;
inline void topo(){
for(int i=1;i<=num;++i){
if(!ind[i]){
dp[i]=sum[i];
ans=std::max(dp[i],ans);
q.push(i);
}
}
while(!q.empty() ){
int u=q.front();q.pop();
for(int i=head[u];~i;i=nxt[i]){
int v=to[i].v;
--ind[v];
if(ind[v]==0){
dp[v]=dp[u]+sum[v];
q.push(v);
ans=std::max(ans,dp[v]);
}
}
}
}
inline bool cmp(Edge x,Edge y){
if(x.u==y.u) return x.v<y.v;
return x.u<y.u;
}
int main(){
filein(b);fileot(b);
read(n);read(m);
head.resize(n+1,-1);
for(int i=1;i<=n;++i){
read(a[i]);
}
for(int i=1;i<=m;++i){
int u,v;read(u);read(v);
join(u,v);
}
for(int i=1;i<=n;++i){
if(!dfn[i]){
idx=0;
dfs(i);
}
}
m=0;
for(int i=0;i<to.size();++i){
if(col[to[i].u]!=col[to[i].v]){
e[++m]={col[to[i].u],col[to[i].v]};
}
}
head.clear();nxt.clear();to.clear();
head.resize(num+1,-1);
std::sort(e+1,e+1+m,cmp);
for(int i=1;i<=m;++i){
if(i>1 and e[i].u==e[i-1].u and e[i].v==e[i-1].v)
continue;
//printf("%d %d\n",e[i].u,e[i].v);
join(e[i].u,e[i].v);
++ind[e[i].v];
}
topo();
printf("%d\n",ans);
return 0;
}

Tarjan入门的更多相关文章

  1. hdu 1269 (强联通分量Tarjan入门)

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  2. POJ 2168 Popular cows [Tarjan 缩点]

                                                                                                         ...

  3. 「刷题笔记」Tarjan

    贴一个讲得非常详细的\(tarjan\)入门教程 信息传递 讲个笑话:我之前用并查集求最小环过的这题,然后看见题目上有个\(tarjan\)标签 留下了深刻的印象:\(tarjan\)就是并查集求最小 ...

  4. 【小白入门向】tarjan算法+codevs1332上白泽慧音 题解报告

    一.[前言]关于tarjan tarjan算法是由Robert Tarjan提出的求解有向图强连通分量的算法. 那么问题来了找蓝翔!(划掉)什么是强连通分量? 我们定义:如果两个顶点互相连通(即存在A ...

  5. HDU-2586-裸LCA入门-tarjan离线

    http://acm.hdu.edu.cn/showproblem.php?pid=2586 给出一颗树和边权,询问两点距离. 考虑tarjan离线做法,做法很巧妙,当前进行到u,对他的儿子v,当v子 ...

  6. HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题

    Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  7. 2-sat入门(tarjan)hdu(3062)

    hdu3062 Party Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  8. LCA离线Tarjan,树上倍增入门题

    离线Tarjian,来个JVxie大佬博客最近公共祖先LCA(Tarjan算法)的思考和算法实现,还有zhouzhendong大佬的LCA算法解析-Tarjan&倍增&RMQ(其实你们 ...

  9. Tarjan缩点入门

    缩点 顾名思义,缩点就是把一个强连通分量缩成一个点 Tarjan 在dfs的过程中记录时间戳,若能够通过某个点返回已遍历的点,则可以缩点 inline void Tarjan(int x)// st栈 ...

随机推荐

  1. TensorFlow使用GPU训练时CPU占用率100%而GPU占用率很低

    在训练keras时,发现不使用GPU进行计算,而是采用CPU进行计算,导致计算速度很慢. 用如下代码可检测tensorflow的能使用设备情况: from tensorflow.python.clie ...

  2. JAVA对XML文件的读写

    XML 指可扩展标记语言(EXtensible Markup Language),是独立于软件和硬件的信息传输工具,应用于 web 开发的许多方面,常用于简化数据的存储和共享. xml指令处理指令,简 ...

  3. Java报错:org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.sirifeng.babytun.dao.GoodsDAO.findById

    前言 最近学vue学得差不多了,想来搭个项目实战一下,结果刚开始搭建SSM框架的时候就来到了我们最喜欢的debug环节 org.apache.ibatis.binding.BindingExcepti ...

  4. 导出带标签的tar包(docker)-解决导出不带标签的麻烦

    需求:在docker的本地镜像库中导出tar包给其他节点使用. 如果使用:docker save -o package.tar e82656a6fc 这样形式导出的tar包,安装之后标签会消失解决办法 ...

  5. YOLO系列梳理(一)YOLOv1-YOLOv3

    ​ 前言 本文是YOLO系列专栏的第一篇,该专栏将会介绍YOLO系列文章的算法原理.代码解析.模型部署等一系列内容.本文系公众号读者投稿,欢迎想写任何系列文章的读者给我们投稿,共同打造一个计算机视觉技 ...

  6. RFC 标准文档

    RFC 标准文档 什么是 RFC ? RFC(Request For Comments)意即"请求评论",包含了关于Internet的几乎所有重要的文字资料.如果你想成为网络方面的 ...

  7. Spring MVC 工作原理和流程、注解

    Spring MVC 是实现MVC设计模式的企业级开发框架,是Spring框架的一个子模块,无需整合,开发起来更加便捷. MVC设计模式 MVC是一种设计模式,它将应用程序分为 Controller. ...

  8. 从.net开发做到云原生运维(八)——DevOps实践

    1. DevOps的一些介绍 DevOps(Development和Operations的组合词)是一组过程.方法与系统的统称,用于促进开发(应用程序/软件工程).技术运营和质量保障(QA)部门之间的 ...

  9. 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)

    2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...

  10. 雪花算法生成分布式ID

    分布式主键ID生成方案 分布式主键ID的生成方案有以下几种: 数据库自增主键 缺点: 导入旧数据时,可能会ID重复,导致导入失败 分布式架构,多个Mysql实例可能会导致ID重复 UUID 缺点: 占 ...