【算法】浅学 LCA
参考资料
一、概念
最近公共祖先称为 LCA (Lowest Common Ancestor)
它指的是在一颗树中,离两个节点最近的公共祖先
如下图,
节点 7 和节点 5 的最近公共祖先是 2
节点 8 和节点 3 的最近公共祖先是 1
节点 4 和节点 2 的最近公共祖先是 2
那么求 LCA 有哪些方法呢?
二、实现
• 暴力
我们不难想到一种很暴力的想法
如上图,现在我们要求 7 和 5 的 LCA
令 x = 7 , y = 5
首先我们先让 x 和 y 两个节点在同一层,如果深度不一的话,浅的那个节点很有可能就会超过他们的 LCA
x 变为它的父节点,通俗点说就是跳到它父节点的位置
现在 x 和 y 深度相等了,就一起跳到它们各自的父节点,直到 x 和 y 跳到了同一个节点。而这个节点就是它们的 LCA
很显然,时间爆掉了,我们需要一点优化
• 倍增
上面的想法一格一格地跳太慢了,那么可不可以让它们一次跳一大块呢?
这里我们就可以运用倍增思想,不了解倍增思想的可以先看看参考资料那
先定义几个数组
\(fa_{[i][j]}\) 表示 i 节点的第 \(2^j\) 个祖先
\(deep_{[i]}\) 表示 i 节点的深度
首先还是一样的,将 x 和 y 跳到同一深度,这里也要用倍增法
每次考虑跳 \(2^n\) 次,但是不能超过 LCA 的深度
也就是每次跳的时候,判定一下如果跳了 \(2^n\) 后,两个节点的父亲会不会相同,如果相同,就表示跳到 LCA 或者跳过头了
最后输出跳完之后 x 和 y 的父节点即可
预处理 fa 数组时,我们可以运用一个显而易见的结论,i 的 \(2^j\) 个祖先 = i 的 \(2^{j-1}\) 个祖先的 \(2^{j-1}\) 个祖先
表示出来就是这样的:
\]
为什么呢?
首先不难得出,\(2^{j-1}=2^j\div2\) (初中的幂运算)
这在树上可以表现为将 i 上面的 \(2^j\) 层平均分成了两份,跳了一半,再跳一半,当然就可以跳到层的最顶端了
三、代码
• 暴力
• 倍增
#include<bits/stdc++.h>
using namespace std;
const int N=5e5+5;
int n,m,s;
int tot,head[N<<1];
int ln,fa[N][35],deep[N];
struct node{
int nex,to;
}edge[N<<1];
void add(int x,int y){
edge[++tot].to=y;
edge[tot].nex=head[x];
head[x]=tot;
}
void dfs(int x,int fx){
fa[x][0]=fx;
deep[x]=deep[fx]+1;
for(int i=1;i<=ln;i++){
fa[x][i]=fa[fa[x][i-1]][i-1];
}
for(int i=head[x];i;i=edge[i].nex){
if(edge[i].to==fx) continue;
dfs(edge[i].to,x);
}
}
int lca(int x,int y){
if(deep[x]>deep[y]) swap(x,y);
for(int i=ln;i>=0;i--){
if((deep[y]-deep[x])>>i&1!=0) y=fa[y][i];
}
if(x==y) return x;
for(int i=ln;i>=0;i--){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];y=fa[y][i];
}
}
return fa[x][0];
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>m>>s;
ln=log2(n);
for(int i=1;i<=n-1;i++){
int x,y;
cin>>x>>y;
add(x,y);add(y,x);
}
dfs(s,0);
for(int i=1;i<=m;i++){
int x,y;
cin>>x>>y;
cout<<lca(x,y)<<"\n";
}
return 0;
}
四、时间复杂度
• 暴力
操作 | 时间复杂度 |
---|---|
预处理 | O(n) |
查询 | O(n) |
随机树查询 | O(log n) |
• 倍增
操作 | 时间复杂度 |
---|---|
预处理 | O(n log n) |
查询 | O(log n) |
五、例题
• 斐波那契
problem
Solve
看到题面,一眼 LCA
但这颗树和普通的树不一样,关键在于它编码之间的父子关系,所以我们不妨先观察一下这颗树:
看一下父子节点之间的差值(以 1 和它的孩子们为例)
孩子 | 差值 |
---|---|
2 | 1 |
3 | 2 |
4 | 3 |
6 | 5 |
9 | 8 |
如果还是没能看出规律的话,不妨在最前面加一个 1,数列就变成了 1 1 2 3 5 8,这就是斐波那契数列
于是我们可以通过这个关系来找到子节点的父亲,与 LCA 的算法思想一样,假设现在要求 x 和 y 两个节点的 LCA
如果 x = y,就意味着它们已经找到了最近公告祖先,直接跳出循环
否则找到 x,y中编号更大的一个,跳到它的父节点
Code
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=3e5+50;
const int M=60;
int fli[N];
inline int lca(int x,int y){
while(x!=y){
if(x<y) swap(x,y);
int l=0,r=M+1;
while(l+1<r){
int mid=(l+r)>>1;
if(fli[mid]<x) l=mid;
else r=mid;
}
x-=fli[l];
}
return x;
}
signed main(){
ios::sync_with_stdio(false);
int t;
cin>>t;
fli[1]=fli[2]=1;
for(int i=3;i<=M;i++) fli[i]=fli[i-1]+fli[i-2];
while(t--){
int x,y;
cin>>x>>y;
cout<<lca(x,y)<<"\n";
}
return 0;
}
• 紧急集合
Problem
Solve
三个节点的最近公共祖先问题,可能会想到两两求最近公共祖先的想法,但其实这样路径并不会最小,比如下面这图,要求的三个点分别为5 7 8:
按照之前的思路,它们应该在 1 集合,此时的花费是 8。但如果在 6 集合的话,花费只有 6,明显更优
我们分别对三个点取 LCA,此时:
节点 A | 节点 B | LCA |
---|---|---|
5 | 8 | 1 |
5 | 7 | 1 |
7 | 8 | 6 |
此时有两个 LCA 重合,而更优的是取不重合的那个节点,我们就可以就此写出代码了
Code
#include<bits/stdc++.h>
using namespace std;
const int N=5e5+5;
int n,ln;
int tot,head[N<<1];
int deep[N],fa[N][35];
int ansi,money;
struct node{
int to,nxt;
}edge[N<<1];
void add(int x,int y){
edge[++tot].to=y;
edge[tot].nxt=head[x];
head[x]=tot;
}
void dfs(int x,int fx){
deep[x]=deep[fx]+1;
fa[x][0]=fx;
for(int i=1;i<=ln;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=head[x];i;i=edge[i].nxt){
int son=edge[i].to;
if(son==fx) continue;
dfs(son,x);
}
}
int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
for(int i=ln;i>=0;i--){
if(((deep[x]-deep[y])>>i&1)!=0){
x=fa[x][i];
// money+=(1>>i);
}
}
if(x==y) return x;
for(int i=ln;i>=0;i--){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];y=fa[y][i];
// money+=(1<<i);
}
}
// money++;
return fa[x][0];
}
int main(){
ios::sync_with_stdio(false);
int t;
cin>>n>>t;
ln=log2(n);
for(int i=1;i<n;i++){
int x,y;
cin>>x>>y;
add(x,y);add(y,x);
}
dfs(1,0);
while(t--){
//money=0;
int x,y,z,a,b,c;
cin>>x>>y>>z;
// cout<<lca(lca(x,y),lca(y,z))<<" "<<money<<"\n";
a=lca(x,y),b=lca(y,z),c=lca(x,z);
if(a==b) ansi=c;
else if(b==c) ansi=a;
else ansi=b;
money=deep[x]+deep[y]+deep[z]-deep[a]-deep[b]-deep[c];
cout<<ansi<<" "<<money<<"\n";
}
return 0;
}
【算法】浅学 LCA的更多相关文章
- junit浅学笔记
JUnit是一个回归测试框架(regression testing framework).Junit测试是程序员测试,即所谓白盒测试,因为程序员知道被测试的软件如何(How)完成功能和完成什么样(Wh ...
- 从最大似然到EM算法浅解
从最大似然到EM算法浅解 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习十大算法之中的一个:EM算法.能评得上十大之中的一个,让人听起来认为挺NB的. ...
- 浅学JavaScript
JavaScript是互联网上最流行的脚本语言,可广泛用于服务器.PC.笔记本电脑智能手机等设备: 对事件的反应: <!DOCTYPE html> <html> <hea ...
- Kmp算法浅谈
Kmp算法浅谈 一.Kmp算法思想 在主串和模式串进行匹配时,利用next数组不改变主串的匹配指针而是改变模式串的匹配指针,减少大量的重复匹配时间.在Kmp算法中,next数组的构建是整个Kmp算法的 ...
- Java实现 蓝桥杯VIP 算法训练 学做菜
算法训练 学做菜 时间限制:1.0s 内存限制:256.0MB 问题描述 涛涛立志要做新好青年,他最近在学做菜.由于技术还很生疏,他只会用鸡蛋,西红柿,鸡丁,辣酱这四种原料来做菜,我们给这四种原料标上 ...
- 0算法基础学算法 搜索篇第二讲 BFS广度优先搜索的思想
dfs前置知识: 递归链接:0基础算法基础学算法 第六弹 递归 - 球君 - 博客园 (cnblogs.com) dfs深度优先搜索:0基础学算法 搜索篇第一讲 深度优先搜索 - 球君 - 博客园 ( ...
- Tarjan算法离线 求 LCA(最近公共祖先)
本文是网络资料整理或部分转载或部分原创,参考文章如下: https://www.cnblogs.com/JVxie/p/4854719.html http://blog.csdn.net/ywcpig ...
- 【算法】RMQ LCA 讲课杂记
4月4日,应学弟要求去了次学校给小同学们讲了一堂课,其实讲的挺内容挺杂的,但是目的是引出LCA算法. 现在整理一下当天讲课的主要内容: 开始并没有直接引出LCA问题,而是讲了RMQ(Range Min ...
- 利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构
相关知识:(来自百度百科) LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 例如: 1和7的最近公共祖先为5: 1和5的 ...
随机推荐
- devops-1:代码仓库git的使用
devops-gitlab 介绍 gitlab同github.gitee和bitbucket功能一致,都是提供一个存储代码的服务,这里就以gitlab为例,学习一下如何结合git工具使用. 核心组件: ...
- MGR的gtid_executed不连续的问题分析
GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 1.问题描述 在做MGR测试的时候偶尔遇到gtid_executed事务ID不连续的问题,但是并不影响数据库的正常运行.现 ...
- Tracer类定义
这个类主要是用于检测光线是否穿过球体.是核心,所有的碰撞都继承于这个类,书上也阐述了很多.详细就看书. 类定义: #pragma once #ifndef __TRACER_HEADER__ #def ...
- package.json 与 package-lock.json 的关系
模块化开发在前端越来越流行,使用 node 和 npm 可以很方便的下载管理项目所需的依赖模块.package.json 用来描述项目及项目所依赖的模块信息. 那 package-lock.json ...
- LOJ6029「雅礼集训 2017 Day1」市场 (线段树)
题面 从前有一个学校,在 O n e I n D a r k \rm OneInDark OneInDark 到任之前风气都是非常良好的,自从他来了之后,发布了一系列奇怪的要求,挟制了整个学校,导致风 ...
- Spring的俩大核心概念:IOC、AOP
1.Spring 有两个核心部分: IOC 和 Aop (1)IOC:控制反转,把创建对象过程交给 Spring 进行管理 (2)Aop:面向切面,不修改源代码进行功能增强 2.Spring 特点 ...
- Android配置OpenCV C++开发环境
网上的OpenCV配置环境大部分都不能正常配置成功,不是编译时报找不到so,就是运行找不到so.本文是我试了不少坑才找到的配置方法.其原理是让AndroidStudio自己根据mk文件自动配置. 1. ...
- Windows 2012 R2 计划任务发送邮件
这两天把域控制器升级到了2012 R2,忽然发现原本用的系统自动发邮件提示用户账户锁定的计划任务配置起来有点麻烦了.原因是微软把自动发送邮件和提示消息的功能从计划任务中去除了. 首先用wevtu ...
- 算法:KMP, str1字符串是否包含str2字符串
[普通解法]从左到右遍历str1的每一个字符,然后看如果 以当前字符作为第一个字符出发 是否匹配 str2字符串. [KMP算法] 1)生成一个nextArr数组,长度与str2字符串长度一样.i 的 ...
- 前端 vue表格数据导出Excel 文件实现
实现思路 使用json2csv将后台json数据转化为csv格式数据 采用创建Blob(二进制大对象)的方式来存放缓存数据: 生成下载链接: 创建一个a标签,设置href和download属性 触发a ...