2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)
2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)
https://www.luogu.com.cn/problem/P2824
题意:
在 2016 年,佳媛姐姐喜欢上了数字序列。因而她经常研究关于序列的一些奇奇怪怪的问题,现在她在研究一个难题,需要你来帮助她。
这个难题是这样子的:给出一个 1 到 n 的排列,现在对这个排列序列进行 m 次局部排序,排序分为两种:
0 l r表示将区间 \([l,r]\) 的数字升序排序1 l r表示将区间 \([l,r]\) 的数字降序排序
注意,这里是对下标在区间 \([l,r]\) 内的数排序。
最后询问第 \(q\) 位置上的数字。
分析:
先二分答案二分出位置 \(p\) 上可能的结果 \(maxn\) ,把大于等于 \(maxn\) 的数全部标成 \(1\) ,否则标成 \(0\) 。这样对于一个 \(01\) 串进行升序或降序排序就是把一个区间分成两半,一半全部区间修改 \(1\) ,另一半修改成 \(0\) 。对于位置 \(p\) ,如果这个节点上是 \(1\) ,那么就能肯定这个数大于等于 \(maxn\) ,不断二分,直至确定这个数究竟是多少。
代码如下:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define IOS ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define ls (x<<1)
#define rs (x<<1)|1
using namespace std;
const int N=1e5+10;
int n,m,val[N],p,a[N];
struct node{
int len,sum,lazy;
}t[N<<3];
struct nodei{
int op,l,r;
}q[N];
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')w=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0'){
s=s*10+ch-'0';
ch=getchar();
}
return s*w;
}
inline void update(int x){
t[x].sum=t[ls].sum+t[rs].sum;
}
inline void pre_pushdown(int x,int flag){
if(flag==1)t[x].sum=t[x].len;
else t[x].sum=0;
}
inline void pushdown(int x){
if(t[x].lazy==-1)return ;
t[ls].lazy=t[rs].lazy=t[x].lazy;
pre_pushdown(ls,t[x].lazy);
pre_pushdown(rs,t[x].lazy);
t[x].lazy=-1;
}
inline void build(int x,int l,int r,int maxn){
t[x].lazy=-1;t[x].len=r-l+1;
if(l==r)return (void)(t[x].sum=val[l]>=maxn);
int mid=(l+r)>>1;
build(ls,l,mid,maxn);
build(rs,mid+1,r,maxn);
update(x);
}
inline int query(int x,int l,int r,int L,int R){
if(l>R||r<L)return 0;
if(l>=L&&r<=R)return t[x].sum;
pushdown(x);
int mid=(l+r)>>1;
int ans=0;
if(L<=mid)ans+=query(ls,l,mid,L,R);
if(R>mid)ans+=query(rs,mid+1,r,L,R);
update(x);
return ans;
}
inline void change(int x,int l,int r,int L,int R,int k){
if(l>R||r<L)return ;
if(l>=L&&r<=R){
t[x].lazy=k;
pre_pushdown(x,k);
return ;
}
pushdown(x);
int mid=(l+r)>>1;
if(L<=mid)change(ls,l,mid,L,R,k);
if(R>mid)change(rs,mid+1,r,L,R,k);
update(x);
}
inline void find(){
for(int i=1;i<=n;i++)cout<<query(1,1,n,i,i)<<" ";cout<<endl;
}
inline bool check(int maxn){
build(1,1,n,maxn);
//cout<<"maxn "<<maxn<<endl;
//find();
for(int i=1;i<=m;i++){
int len=query(1,1,n,q[i].l,q[i].r);
if(q[i].op==0){
change(1,1,n,q[i].r-len+1,q[i].r,1);
if(q[i].r-len>=q[i].l)change(1,1,n,q[i].l,q[i].r-len,0);
}else{
change(1,1,n,q[i].l,q[i].l+len-1,1);
if(q[i].l+len<=q[i].r)change(1,1,n,q[i].l+len,q[i].r,0);
}
//cout<<"op "<<q[i].op<<" l "<<q[i].l<<" r "<<q[i].r<<" len "<<len<<endl;
//find();
}
if(query(1,1,n,p,p))return true;
else return false;
}
inline void erfen(){
int L=1,R=n,mid,ans=0;
//sort(a+1,a+n+1);
while(L<=R){
mid=(L+R)>>1;
//cout<<"L "<<L<<" R "<<R<<" mid "<<mid<<endl;
if(check(mid))L=mid+1,ans=mid;
else R=mid-1;
}
cout<<ans;
}
int main(){
n=read();m=read();
for(int i=1;i<=n;i++)val[i]=a[i]=read();
for(int i=1;i<=m;i++)q[i].op=read(),q[i].l=read(),q[i].r=read();
p=read();
erfen();
return 0;
}
2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)的更多相关文章
- [HEOI2016/TJOI2016]排序 线段树+二分
[HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...
- [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)
题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...
- 洛谷$P2824\ [HEOI2016/TJOI2016]$ 排序 线段树+二分
正解:线段树+二分 解题报告: 传送门$QwQ$ 昂着题好神噢我$jio$得$QwQQQQQ$,,, 开始看到长得很像之前考试题的亚子,,,然后仔细康康发现不一样昂$kk$,就这里范围是$[1,n]$ ...
- luoguP2824 [HEOI2016/TJOI2016]排序(线段树分裂做法)
题意 所谓线段树分裂其实是本题的在线做法. 考虑如果我们有一个已经排好序的区间的权值线段树,那么就可以通过线段树上二分的方法得到第\(k\)个数是谁. 于是用set维护每个升序/降序区间的左右端点以及 ...
- BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)
题目链接 对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树.初始时就是\(n\)棵. 对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并. 对于升 ...
- Luogu P2824 [HEOI2016/TJOI2016]排序 线段树+脑子
只会两个$log$的$qwq$ 我们二分答案:设答案为$ans$,则我们把$a[i]<=ans$全部设成$0$,把$a[i]>ans$全部设成$1$,扔到线段树里,这样区间排序(升序)就是 ...
- day 1 晚上 P2824 [HEOI2016/TJOI2016]排序 线段树
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #inclu ...
- BZOJ4552:[TJOI2016&HEOI2016]排序(线段树,二分)
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- BZOJ 4552: [Tjoi2016&Heoi2016]排序 线段树 二分
目录 此代码是个假代码,只能糊弄luogu,以后再改,路过大佬也可以帮一下辣 update 10.6 此代码是个假代码,只能糊弄luogu,以后再改,路过大佬也可以帮一下辣 /* //fang zhi ...
随机推荐
- 6月22日 Django中ORM的F查询和Q查询、事务、QuerySet方法大全
一.F查询和Q查询 F查询 在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较.如果我们要对两个字段的值做比较,那该怎么做呢? Django 提供 F() 来做这样的比较.F() 的实 ...
- java中自己常用到的工具类-压缩解压zip文件
package com.ricoh.rapp.ezcx.admintoolweb.util; import java.io.File; import java.io.FileInputStream; ...
- SINAMICS S120的核心控制单元CU320使用教程,电机模块接线
SINAMICS是西门子公司新一代的驱动产品,它正在逐步取代现有的MASTERDRIVES及SIMODRIVE系列的驱动系统.SINAMICS S120是集V/f控制.矢量控制和伺服控制于一体的多轴驱 ...
- git 多人在同一分支上迭代开发时,如何保证分支提交历史保持线性
背景 最近我们组几个同事都投入到了一个新项目,互相之间的功能耦合比较紧密,因此,是打算从master上新拉一个分支,可以理解为我们几个人的开发分支,以develop代替. 一开始,我们是打算像svn那 ...
- 深度学习训练过程中的学习率衰减策略及pytorch实现
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...
- gradle构建scala
1. 在目录下创建build.gradle文件,内容为: apply plugin: 'idea' apply plugin: 'scala' repositories { mavenLocal() ...
- 关于XML文件
关于xml文件没有提示(eclipse) 点我
- Django的多数据库与读写分离
1.多个数据库 settings.py DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.pa ...
- Netty学习摘记 —— 再谈ChannelHandler和ChannelPipeline
本文参考 本篇文章是对<Netty In Action>一书第六章"ChannelHandler和ChannelPipeline",主要内容为ChannelHandle ...
- 无人车系统仿真相关软件介绍-dSPACE
今天本来是想简单的介绍一下dSPACE的Automotive simulation models(简称ASM),但是想想还是把dSPACE这个公司的整个开发流程写一下.这样也可以了解一下汽车的整个软件 ...