Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2340    Accepted Submission(s): 748

Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:

  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?

(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
 
Input
  The first line of the input contains an integer T, the number of test cases.

  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).

  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 
Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source





题意:问构成的生成树当中是否存在黑色边(边为1)数为斐波那契数
思路:求出生成树中最小包括的黑色边数。和最多黑色边数,假设有斐波那契数在两者之间,则能够构成。由于黑白边能够搭配使用
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int n,m;
int fibo[50];
int f[100010];
struct node
{
int u,v,c;
} s[100010]; bool cmp1(node x , node y)
{
return x.c < y.c;
} bool cmp2(node x, node y)
{
return x.c > y.c;
} int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
} void Union(int x ,int y)
{
int fx = find(x);
int fy = find(y); if(fx != fy)
{
f[fx] = fy;
}
} int main()
{
#ifdef xxz
freopen("in.txt","r",stdin);
#endif
fibo[1] = 1;
fibo[2] = 2;
for(int i = 3; ; i++)
{
fibo[i] = fibo[i-1] + fibo[i-2];
if(fibo[i] >= 100000) break;
} int T,Case = 1;;
scanf("%d",&T); while(T--)
{ scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{ scanf("%d%d%d",&s[i].u,&s[i].v,&s[i].c);
Union(s[i].u,s[i].v);
}
int cent = 0;
int bl = 0, bh = 0;
int root = 0,size = 0; for(int i = 1; i <= n; i++)
{
if(f[i] == i)
{
cent++;
root = i;
}
} printf("Case #%d: ",Case++);
if(cent >= 2) cout<<"No"<<endl;//首先要推断能否构成一个生成树。推断根节点个数是否为1即可
else
{
sort(s,s+m,cmp1);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{
int fu = find(s[i].u);
int fv = find(s[i].v);
if(fu == fv) continue; bl += s[i].c;
size++;
Union(s[i].u,s[i].v);
if(size == n-1) break;
} size = 0;
sort(s,s+m,cmp2);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{
int fu = find(s[i].u);
int fv = find(s[i].v);
if(fu == fv) continue; bh += s[i].c;
size++;
Union(s[i].u,s[i].v);
if(size == n-1) break;
} int flag = 0;
for(int i =1; fibo[i] <= 100000 ; i++ )
{
if(fibo[i] >= bl && fibo[i] <= bh)
{
flag = 1;
break;
}
}
if(flag) printf("Yes\n");
else printf("No\n"); } }
}

Hdu4786的更多相关文章

  1. 【最小生成树】【kruscal】hdu4786 Fibonacci Tree

    假设这张图能够形成具有k条白边的生成树, 则易证k一定形成一个连续的区间[a,b],中间一定不会断开.要是断开……tm怎么可能. 所以求出a,b就好啦,人家都给你把白边赋成1了,直接跑一下最小生成树, ...

  2. hdu4786 Fibonacci Tree (最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:给定图的n个点和m条双向边,告诉你每条边的权值.权值为1表示该边是白边,权值为0表示该边为 ...

  3. hdu4786 Fibonacci Tree[最小生成树]【结论题】

    一道结论题:如果最小生成树和最大生成树之间存在fib数,成立.不存在或者不连通则不成立.由于是01图,所以这个区间内的任何生成树都存在. 证明:数学归纳?如果一棵树没有办法再用非树边0边替代1边了,那 ...

  4. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  5. Fibonacci Tree

    hdu4786:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:给你一个无向图,然后其中有的边是白色的有的边是黑色的.然后问你是否存在一棵生成树,在 ...

  6. The 2013 ACMICPC Asia Regional Chengdu

    还有19天出发北京站,今年北京站的出题方是上交,去年他们出的成都现场的赛题,首先复盘一下. 去年的成都是我经历的第一次现场赛,也是近距离第一次见到了CLJ的真人,最后也是被虐惨了,那时候是声闻大神带着 ...

随机推荐

  1. dfs序题集

    dfs序可以维护一个子树内的信息 需要记录dfs进的时间以及所有子树都遍历完的时间 void dfs(int u, int fa) { L[u] = ++id; for(int i = head[u] ...

  2. Vue父子组件之间的通讯(学习笔记)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. Android socket 使用PrintWriter和BufferedReader发送和接收出现乱码问题解决

    项目中用到了Android和C++的通信.选择了用socket 发送字符的方式,一開始使用的代码是: socket=new Socket(); InetSocketAddress isa = new ...

  4. Leetcode--easy系列4

    #58 Length of Last Word Given a string s consists of upper/lower-case alphabets and empty space char ...

  5. ECMAScript 6新特性之Proxy

    ECMAScript 6中新增了一个全局构造函数:Proxy.该构造函数能够接收两个參数:一个目标对象.一个处理对象. 代码演示样例: var target = {}; var handler = { ...

  6. C++11新特性应用--介绍几个新增的便利算法(用于分区的几个算法)

    今天继续. C++11新增的关于Non-modifying sequence operations和Modifying sequence operations的算法已经写了.具体信息见之前的博客. 以 ...

  7. Linux文件系统(七)---系统调用之open操作(一)

    (内核2.4.37) 一. 当我们打开一个文件的时候.须要获得文件的文件描写叙述符(前面已经说过事实上就是文件数组下标).通常是通过函数open来完毕.这个系统调用在<unistd.h>头 ...

  8. matplotlib 可视化 —— matplotlib.patches

    官方帮助文档 patches - Matplotlib 1.5.1 documentation patches 下主要包含的常用图形类有: Eclipse Circle Wedge 1. plt.gc ...

  9. (转载)Android之有效防止按钮多次重复点击的方法(必看篇)

    为了防止测试妹子或者用户频繁点击某个按钮,导致程序在短时间内进行多次数据提交or数据处理,那到时候就比较坑了~ 那么如何有效避免这种情况的发生呢? 我的想法是,判断用户点击按钮间隔时间,如果间隔时间太 ...

  10. RGB与16进制色互转

      点击进入新版 <前端在线工具站> CSS, JavaScript 压缩YUI compressor, JSPacker...HTML特殊符号对照表PNG,GIF,JPG... Base ...