poj1679 The Unique MST(判定次小生成树)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 23180 | Accepted: 8235 |
Description
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all
the edges in E'.
Input
triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!
Source
对于最小生成树(能够用kruskal和prime算法求得,在这里我是用kruskal求得,假设不会请自己百度。),边的权值的和最小称为最小生成树。
而次小生成树就是除了最小生成树外的最小生成树。并且全部的次小生成树都是通过最小生成树的换边得到的。
所以难点就是怎样换边。
对于怎样换边:
1.先求出最小生成树,值为x。
2.一一枚举加入不在生成树上的边(这时候一定形成了一个环)
3.寻找环上的(最小生成树上的边)权值最大值与你所加入不在生成树上的边的权值比較,所得到的差值为min。
因为是一一枚举加入边,min有多个,求出最小的哪一个,所以次小生成树就为x+min。
昨天尽管把这道题A了,但是看到讨论区的測试数据发现自己又一个没有过,然而却AC了。然后今天起床就来研究研究。
。
。
发现我的程序是在找最大值。但是假设一个环有分支,它还会去找分支里面的最大值。于是就又优化了一下。
用的优先队列。
先附上第一次做的代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
struct node
{
int a,b,cost;
}c[10005];
int fa[105],tree[105][105],vis[10005],vis_tree[105];//vis数组是对m对数据的标记vis_tree是对最小生成树标记
int n,m,max1;
bool cmp(node x,node y)
{
if(x.cost<y.cost)
return true;
else
return false;
}
int find(int x)//寻找根
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
void sec_tree(int a,int b)//查找生成树某条边的最大值(我在这里做的是错误的。假设形成的环有分支,也会查找)
{
vis_tree[a]=1;
if(a==b)
return ;
for(int i=1;i<=n;i++)
if(tree[a][i]&&!vis_tree[i])
{
if(max1<tree[a][i])
max1=tree[a][i];
sec_tree(i,b);
}
}
int main()
{
int ncase;
scanf("%d",&ncase);
while(ncase--)
{
memset(vis,0,sizeof(vis));
memset(tree,0,sizeof(tree));
memset(&c,0,sizeof(&c));
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=0;i<m;i++)
scanf("%d %d %d",&c[i].a,&c[i].b,&c[i].cost);
sort(c,c+m,cmp);
int sum=0;
for(int i=0;i<m;i++)//kruskal算法求最小生成树
{
int x=find(c[i].a);
int y=find(c[i].b);
if(x!=y)
{
fa[x]=y,sum+=c[i].cost;
tree[x][y]=tree[y][x]=c[i].cost;
vis[i]=1;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(!vis[i])//不在生成树中的边和形成的环的最大值比較。假设相等,MST不唯一
{
max1=-1;
memset(vis_tree,0,sizeof(vis_tree));
sec_tree(c[i].a,c[i].b);
if(max1==c[i].cost)
{
flag=1;
break;
}
}
}
if(!flag)
printf("%d\n",sum);
else
printf("Not Unique!\n");
}
}
这是优化后的代码。凝视和上面一样。就一个地方不同:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
struct node1
{
int a,b,cost;
friend bool operator<(node1 x,node1 y )
{
return x.cost<y.cost;
}
};
priority_queue<node1>s;
struct node
{
int a,b,cost;
}c[10005];
int fa[105],tree[105][105],vis[10005],vis_tree[105];
int n,m,max1,flag1;
bool cmp1(node x,node y)
{
if(x.cost<y.cost)
return true;
else
return false;
}
int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
void sec_tree(int a,int b)
{
node1 temp;
vis_tree[a]=1;
if(a==b)//假设找到a=b,标记一下
{
flag1=1;
}
for(int i=1;i<=n;i++)
if(tree[a][i]&&!vis_tree[i])
{
temp.a=a,temp.b=i,temp.cost=tree[a][i];
s.push(temp);
if(!flag1)//就是在这里和上面不同,假设找不到a=b,那么就把曾经的恢复
s.pop(),vis_tree[i]=0,sec_tree(i,b);
}
}
int main()
{
int ncase;
scanf("%d",&ncase);
while(ncase--)
{
memset(vis,0,sizeof(vis));
memset(tree,0,sizeof(tree));
memset(&c,0,sizeof(&c));
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=0;i<m;i++)
scanf("%d %d %d",&c[i].a,&c[i].b,&c[i].cost);
sort(c,c+m,cmp1);
int sum=0;
for(int i=0;i<m;i++)
{
int x=find(c[i].a);
int y=find(c[i].b);
if(x!=y)
{
fa[x]=y,sum+=c[i].cost;
tree[x][y]=tree[y][x]=c[i].cost;
vis[i]=1;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(!vis[i])
{
int flag1=0;
while(!s.empty())
s.pop();
memset(vis_tree,0,sizeof(vis_tree));
sec_tree(c[i].a,c[i].b);
node1 temp;
temp=s.top();
if(temp.cost==c[i].cost)
{
flag=1;
break;
}
}
}
if(!flag)
printf("%d\n",sum);
else
printf("Not Unique!\n");
}
}
poj1679 The Unique MST(判定次小生成树)的更多相关文章
- POJ-1679 The Unique MST(次小生成树、判断最小生成树是否唯一)
http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its minimum s ...
- POJ1679 The Unique MST 【次小生成树】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20421 Accepted: 7183 D ...
- POJ1679 The Unique MST【次小生成树】
题意: 判断最小生成树是否唯一. 思路: 首先求出最小生成树,记录现在这个最小生成树上所有的边,然后通过取消其中一条边,找到这两点上其他的边形成一棵新的生成树,求其权值,通过枚举所有可能,通过这些权值 ...
- POJ1679 The Unique MST(次小生成树)
可以依次枚举MST上的各条边并删去再求最小生成树,如果结果和第一次求的一样,那就是最小生成树不唯一. 用prim算法,时间复杂度O(n^3). #include<cstdio> #incl ...
- The Unique MST(次小生成树)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22335 Accepted: 7922 Description Give ...
- POJ1679The Unique MST(次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25203 Accepted: 8995 D ...
- poj 1679 The Unique MST【次小生成树】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24034 Accepted: 8535 D ...
- POJ 1679:The Unique MST(次小生成树&&Kruskal)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19941 Accepted: 6999 D ...
- poj 1679 The Unique MST 【次小生成树】【模板】
题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...
- POJ 1679 The Unique MST (次小生成树)题解
题意:构成MST是否唯一 思路: 问最小生成树是否唯一.我们可以先用Prim找到一棵最小生成树,然后保存好MST中任意两个点i到j的这条路径中的最大边的权值Max[i][j],如果我们能找到一条边满足 ...
随机推荐
- java同步包种ArrayBlockingQueue类的分析与理解
前言: ArrayBlockingQueue类是一个堵塞队列.重要用于多线程操作的条件. 一,官方解释 一个建立在数组之上被BlockingQueue绑定的堵塞队列.这个队列元素顺序是先进先出.队列的 ...
- Maven实战(八)---模块划分
为了防止传递依赖,我们各个模块之间尽量用直接依赖的方式.本篇文章介绍多模块化开发.我们做过Maven项目的都知道.我们的项目一般都是分模块的,每一个模块都会相应着一个POM.xml文件,它们之间通过继 ...
- Oracle HR 例子用户的建立 10g,11g均可
Oracle HR 例子用户的建立 10g,11g均可 先将附件(见文章尾部)上的 10 个 .sql 文件放入这个路径中 : $ORACLE_HOME/demo/schema/human_resou ...
- How to install Armbian on Orange Pi Plus 2e
bian on Orange Pi Plus 2e How to install Armbian on Orange Pi Plus 2e Armbian on the microSD You jus ...
- postgresql sql语句 更改表名
SELECT'alter table "public"."'|| t.tablename||'"'||' rename to "'|| "l ...
- OpenCV —— 摄像机模型与标定
这种理论看的已经够多了,感觉应用价值不大(矫正畸变图像还凑合,用摄像机测距神马的...) 有始有终吧,简单把内容梳理一下 针孔 摄像机模型 —— 过于理想(不能为快速曝光收集足够的光线) 透镜可以聚 ...
- 「HAOI2016」字符合并
「HAOI2016」字符合并 题意: 有一个长度为\(n\)的\(01\)串,你可以每次将相邻的\(k\)个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这\(k\)个字符确定.你 ...
- HDU——T 2594 Simpsons’ Hidden Talents
http://acm.hdu.edu.cn/showproblem.php?pid=2594 Time Limit: 2000/1000 MS (Java/Others) Memory Limi ...
- BZOJ——T 1355: [Baltic2009]Radio Transmission
http://www.lydsy.com/JudgeOnline/problem.php?id=1355 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: ...
- Maven中央仓库信息速查
http://maven.outofmemory.cn/