#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#define MaxNumKey 6 /*keyword项数的最大值*/
#define Radix 10 /*keyword基数,此时是十进制整数的基数*/
#define MaxSize 1000
#define N 6
typedef int KeyType; /*定义keyword类型*/
typedef struct
{
KeyType key[MaxNumKey]; /*keyword*/
int next;
}SListCell; /*静态链表的结点类型*/ typedef struct
{
SListCell data[MaxSize]; /*存储元素,data[0]为头结点*/
int keynum; /*每一个元素的当前keyword个数*/
int length; /*静态链表的当前长度*/
}SList; /*静态链表类型*/
typedef int addr[Radix]; /*指针数组类型*/ typedef struct
{
KeyType key; /* keyword项 */
}DataType; void PrintList(SList L);
void PrintList2(SList L);
void InitList(SList *L,DataType d[],int n);
int trans(char c);
void Distribute(SListCell data[],int i,addr f,addr r);
void Collect(SListCell data[],addr f,addr r);
void RadixSort(SList *L);
void InitList(SList *L,DataType a[],int n)
/* 初始化静态链表L(把数组D中的数据存于L中) */
{
char ch[MaxNumKey],ch2[MaxNumKey];
int i,j,max=a[0].key;
for(i=1;i<n;i++) /*将最大的keyword存入max*/
if(max<a[i].key)
max=a[i].key;
(*L).keynum=(int)(log10((float)max))+1; /*求keyword的个数*/
(*L).length=n; /*待排序个数*/
for(i=1;i<=n;i++)
{
itoa(a[i-1].key,ch,10); /*将整型转化为字符,并存入ch*/
for(j=strlen(ch);j<(*L).keynum;j++) /*假设ch的长度<max的位数,则在ch前补'0'*/
{
strcpy(ch2,"0");
strcat(ch2,ch);
strcpy(ch,ch2);
}
for(j=0;j<(*L).keynum;j++) /*将每一个keyword的各个位数存入key*/
(*L).data[i].key[j]=ch[(*L).keynum-1-j];
}
for(i=0;i<(*L).length;++i) /*初始化静态链表*/
(*L).data[i].next=i+1;
(*L).data[(*L).length].next=0;
} int trans(char c)
/*将字符c转化为相应的整数*/
{
return c-'0';
}
void Distribute(SListCell data[],int i,addr f,addr r)
/*为data中的第i个keywordkey[i]建立Radix个子表,使同一子表中元素的key[i]同样*/
/*f[0..Radix-1]和r[0..Radix-1]分别指向各个子表中第一个和最后一个元素*/
{
int j,p;
for(j=0;j<Radix;j++) /*将各个子表初始化为空表*/
f[j]=0;
for(p=data[0].next;p;p=data[p].next)
{
j=trans(data[p].key[i]); /*将相应的keyword字符转化为整数类型*/
if(!f[j]) /*f[j]是空表。则f[j]指示第一个元素*/
f[j]=p;
else
data[r[j]].next=p;
r[j]=p; /*将p所指的结点插入第j个子表中*/
}
} void Collect(SListCell data[],addr f,addr r)
/*按key[i]将f[0..Radix-1]所指各子表依次链接成一个静态链表*/
{
int j,t;
for(j=0;!f[j];j++); /*找第一个非空子表。succ为求后继函数*/
data[0].next=f[j];
t=r[j]; /*r[0].next指向第一个非空子表中第一个结点*/
while(j<Radix-1)
{
for(j=j+1;j<Radix-1&&!f[j];j++); /*找下一个非空子表*/
if(f[j]) /*将非空链表连接在一起*/
{
data[t].next=f[j];
t=r[j];
}
}
data[t].next=0; /*t指向最后一个非空子表中的最后一个结点*/
} void RadixSort(SList *L)
/*对L进行基数排序,使得L成为按keyword非递减的静态链表,L.r[0]为头结点*/
{
int i;
addr f,r;
for(i=0;i<(*L).keynum;i++) /*由低位到高位依次对各keyword进行分配和收集*/
{
Distribute((*L).data,i,f,r); /*第i趟分配*/
Collect((*L).data,f,r); /*第i趟收集*/
printf("第%d趟收集后:",i+1);
PrintList2(*L);
}
} void main()
{
DataType d[N]={268,126,63,730,587,184};
SList L;
InitList(&L,d,N);
printf("待排序元素个数是%d个,keyword个数为%d个\n",L.length,L.keynum);
printf("排序前的元素:\n");
PrintList2(L);
printf("排序前的元素的存放位置:\n");
PrintList(L);
RadixSort(&L);
printf("排序后元素的存放位置:\n");
PrintList(L);
system("pause");
}
void PrintList(SList L)
/*按数组序号形式输出静态链表*/
{
int i,j;
printf("序号 keyword 地址\n");
for(i=1;i<=L.length;i++)
{
printf("%2d ",i);
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.data[i].key[j]);
printf(" %d\n",L.data[i].next);
}
}
void PrintList2(SList L)
/*按链表形式输出静态链表*/
{
int i=L.data[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.data[i].key[j]);
printf(" ");
i=L.data[i].next;
}
printf("\n");
}

_DataStructure_C_Impl:基数排序的更多相关文章

  1. 算法与数据结构(十七) 基数排序(Swift 3.0版)

    前面几篇博客我们已经陆陆续续的为大家介绍了7种排序方式,今天博客的主题依然与排序算法相关.今天这篇博客就来聊聊基数排序,基数排序算法是不稳定的排序算法,在排序数字较小的情况下,基数排序算法的效率还是比 ...

  2. 排序算法----基数排序(RadixSort(L))单链表智能版本

    转载http://blog.csdn.net/Shayabean_/article/details/44885917博客 先说说基数排序的思想: 基数排序是非比较型的排序算法,其原理是将整数按位数切割 ...

  3. 排序算法----基数排序(RadixSort(L,max))单链表版本

    转载http://blog.csdn.net/Shayabean_/article/details/44885917博客 先说说基数排序的思想: 基数排序是非比较型的排序算法,其原理是将整数按位数切割 ...

  4. 浅谈C++之冒泡排序、希尔排序、快速排序、插入排序、堆排序、基数排序性能对比分析之后续补充说明(有图有真相)

    如果你觉得我的有些话有点唐突,你不理解可以想看看前一篇<C++之冒泡排序.希尔排序.快速排序.插入排序.堆排序.基数排序性能对比分析>. 这几天闲着没事就写了一篇<C++之冒泡排序. ...

  5. 基本排序算法——基数排序java实现

    基数排序 package basic.sort; import java.util.Arrays; import java.util.Random; public class RadixSort { ...

  6. 数据结构作业之用队列实现的基数排序(Java版)

    题目: 利用队列实现对某一个数据序列的排序(采用基数排序),其中对数据序列的数据(第1和第2条进行说明)和队列的存储方式(第3条进行说明)有如下的要求: 1)当数据序列是整数类型的数据的时候,数据序列 ...

  7. 基数排序 java 实现

    基数排序 java 实现 Wikipedia: Radix sort geeksforgeeks: Radix sort 数学之美番外篇:快排为什么那样快 Java排序算法总结(八):基数排序 排序八 ...

  8. 【UVA 11462】 Age Sort(基数排序)

    题 题意 给你最多2000000个数据,大小是1到99的数,让你排序输出. 分析 快排也可以过.不过这题本意是要基数排序(桶排序),就是读入年龄age, a[age]++,然后输出时,从1到99岁(看 ...

  9. Hark的数据结构与算法练习之基数排序

    算法说明 基数排序是基于计数排序的,所以看这个之前要先看一下计数排序对于理解基数排序是很有帮助的(发现计数和基数的音节几乎一致啊).这个我有写,请点击. OK,现在你肯定已经熟悉了计数排序,那么我就来 ...

随机推荐

  1. hdu 3037Saving Beans(卢卡斯定理)

    Saving Beans Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  2. 显示程序输出并复制到文件(tee 命令)

    Linux tee命令用于读取标准输入的数据,并将其内容输出成文件. tee指令会从标准输入设备读取数据,将其内容输出到标准输出设备,同时保存成文件. 语法 tee [-ai][--help][--v ...

  3. facade 模式和gateway模式的区别

    原文:http://stackoverflow.com/questions/4422211/what-is-the-difference-between-facade-and-gateway-desi ...

  4. 【HTTP】长连接和短连接

    1. HTTP协议与TCP/IP协议的关系 HTTP的长连接和短连接本质上是TCP长连接和短连接.HTTP属于应用层协议,在传输层使用TCP协议,在网络层使用IP协议.IP协议主要解决网络路由和寻址问 ...

  5. 【Oracle】redo与undo

    一 .redo(重做信息) 是Oracle在线(或归档)重做日志文件中记录的信息,万一出现失败时可以利用这些数据来“重放”(或重做)事务.Oracle中记录这些信息的文件叫做redo log file ...

  6. AMQP及RabbitMQ

    AMQPAMQP协议是一个高级抽象层消息通信协议,RabbitMQ是AMQP协议的实现.它主要包括以下组件: 1.Server(broker): 接受客户端连接,实现AMQP消息队列和路由功能的进程. ...

  7. 图像的全局特征--HOG特征、DPM特征

    HOG特征:方向梯度直方图(Histogram of Oriented Gradient,)特征是一种全局图像特征描述子. 它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM ...

  8. error C3859: 超过了PCH的虚拟内存范围;请使用“-Zm33”或更大的命令行选项重新编译

    编译 ORB_SLAM的Release版本时,出现了此问题: 错误 2 error C3859: 超过了 PCH 的虚拟内存范围;请使用"-Zm465"或更大的命令行 修改方法: ...

  9. MFC 缩放和显示IplImage

    序言:使用OpenCV嵌入MFC的框内,图像大小不能和框大小进行匹配,因此需要缩放,使图像适用于MFC框. 后来找到了一种新的方法,此方案貌似u已经废弃. (1).在MFC中显示图片 void CAv ...

  10. rabbitmq-3.5.1-安裝

    系统版本:CentOS 6.5RabbitMQ-Server:3.5.1一.安装erlang1.安装准备,下载安装文件 wget https://packages.erlang-solutions.c ...